• Laser & Optoelectronics Progress
  • Vol. 56, Issue 20, 202408 (2019)
Zhong Hu1, Tao Xu1, Rong Tang1, Huijie Guo2, and Shiyi Xiao1、*
Author Affiliations
  • 1Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China
  • 2State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.3788/LOP56.202408 Cite this Article Set citation alerts
    Zhong Hu, Tao Xu, Rong Tang, Huijie Guo, Shiyi Xiao. Geometric-Phase Metasurfaces: from Physics to Applications[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202408 Copy Citation Text show less
    References

    [1] Pendry J B, Holden A J, Stewart W J et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 76, 4773-4776(1996).

    [2] Pendry J B, Holden A J, Robbins D J et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084(1999). http://ieeexplore.ieee.org/iel5/22/17309/00798002.pdf

    [3] Smith D R, Padilla W J, Vier D C et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 84, 4184-4187(2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000084000018004184000001&idtype=cvips&gifs=Yes

    [4] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011). http://www.nature.com/nphoton/journal/v5/n9/abs/nphoton.2011.154.html

    [5] Shalaev V M. Optical negative-index metamaterials[J]. Nature Photonics, 1, 41-48(2007).

    [6] Shelby R A, Smith D R. Nemat-Nasser S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial[J]. Applied Physics Letters, 78, 489-491(2001). http://scitation.aip.org/content/aip/journal/apl/78/4/10.1063/1.1343489

    [7] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000). http://europepmc.org/abstract/med/11041972

    [8] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005). http://bfg.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=sci&resid=308/5721/534

    [9] Liu Z W, Lee H, Xiong Y et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 315, 1686(2007). http://www.tandfonline.com/servlet/linkout?suffix=cit0012&dbid=8&doi=10.1080%2F05704928.2017.1323309&key=17379801

    [10] Ziolkowski R W, Heyman E. Wave propagation in media having negative permittivity and permeability[J]. Physical Review E, 64, 056625(2001). http://www.ncbi.nlm.nih.gov/pubmed/11736134

    [11] Pendry J B. Controlling electromagnetic fields[J]. Science, 312, 1780-1782(2006).

    [12] Leonhardt U. Optical conformal mapping[J]. Science, 312, 1777-1780(2006).

    [13] Engheta N. Thin absorbing screens using metamaterial surfaces. [C]//IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), June 16-21, 2002, San Antonio, TX, USA. New York: IEEE, 392-395(2002).

    [14] Tretyakov S A, Maslovski S I. Thin absorbing structure for all incidence angles based on the use of a high-impedance surface[J]. Microwave and Optical Technology Letters, 38, 175-178(2003). http://onlinelibrary.wiley.com/doi/10.1002/mop.11006/pdf

    [15] Landy N I, Sajuyigbe S, Mock J J et al. Perfect metamaterial absorber[J]. Physical Review Letters, 100, 207402(2008).

    [16] Landy N I, Bingham C M, Tyler T et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging[J]. Physical Review B, 79, 125104(2009).

    [17] Liu X L, Starr T, Starr A F et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance[J]. Physical Review Letters, 104, 207403(2010). http://www.ncbi.nlm.nih.gov/pubmed/20867064

    [18] Hao J M, Yuan Y, Ran L X et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 99, 063908(2007). http://europepmc.org/abstract/MED/17930829

    [19] Sun W J, He Q, Hao J M et al. A transparent metamaterial to manipulate electromagnetic wave polarizations[J]. Optics Letters, 36, 927-929(2011). http://europepmc.org/abstract/MED/21403731

    [20] Yu N, Genevet P, Kats M A et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 334, 333-337(2011). http://www.tandfonline.com/servlet/linkout?suffix=CIT0002&dbid=8&doi=10.1080%2F09500340.2018.1441918&key=21885733

    [21] Sun S L, He Q, Xiao S Y et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 11, 426-431(2012). http://www.nature.com/nmat/journal/v11/n5/abs/nmat3292.html

    [22] Ni X J, Emani N K, Kildishev A V et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 335, 427(2012). http://pubs.acs.org/servlet/linkout?suffix=ref15/cit15&dbid=16&doi=10.1021%2Facs.nanolett.6b01897&key=10.1126%2Fscience.1214686

    [23] Sun S L, Yang K Y, Wang C M et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 12, 6223-6229(2012). http://pubs.acs.org/doi/abs/10.1021/nl3032668

    [24] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013). http://europepmc.org/abstract/MED/23493714

    [25] Memarzadeh B, Mosallaei H. Array of planar plasmonic scatterers functioning as light concentrator[J]. Optics Letters, 36, 2569-2571(2011). http://www.opticsinfobase.org/abstract.cfm?URI=ol-36-13-2569

    [26] Aieta F, Genevet P, Kats M A et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 12, 4932-4936(2012). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=22894542

    [27] Pors A, Nielsen M G, Eriksen R L et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 13, 829-834(2013). http://www.ncbi.nlm.nih.gov/pubmed/23343380

    [28] Pors A, Albrektsen O, Radko I P et al. Gap plasmon-based metasurfaces for total control of reflected light[J]. Scientific Reports, 3, 2155(2013). http://www.nature.com/srep/2013/130708/srep02155/fig_tab/srep02155_F5.html

    [29] Pors A, Nielsen M G, Bernardin T et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons[J]. Light: Science & Applications, 3, e197(2014). http://www.nature.com/lsa/journal/v3/n8/abs/lsa201478a.html

    [30] Castellanos-Beltran M A, Irwin K D, Hilton G C et al. . Amplification and squeezing of quantum noise with a tunable Josephson metamaterial[J]. Nature Physics, 4, 929-931(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000018000024000037000001&idtype=cvips&gifs=Yes

    [31] Lähteenmäki P, Paraoanu G S, Hassel J et al. Dynamical Casimir effect in a Josephson metamaterial[J]. Proceedings of the National Academy of Sciences, 110, 4234-4238(2013). http://europepmc.org/articles/PMC3600497

    [32] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014). http://www.nature.com/lsa/journal/v3/n10/abs/lsa201499a.html

    [33] Pu M B, Chen P, Wang C T et al. Broadband anomalous reflection based on gradient low-Q meta-surface[J]. AIP Advances, 3, 052136(2013). http://scitation.aip.org/content/aip/journal/adva/3/5/10.1063/1.4809548

    [34] Li X, Xiao S Y, Cai B G et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 37, 4940-4942(2012). http://europepmc.org/abstract/med/23202097

    [35] Guo Y H, Wang Y Q, Pu M B et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 5, 8434(2015). http://europepmc.org/articles/PMC4326699

    [36] Bomzon Z, Biener G, Kleiner V et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 27, 1141-1143(2002).

    [37] Shitrit N, Bretner I, Gorodetski Y et al. Optical spin Hall effects in plasmonic chains[J]. Nano Letters, 11, 2038-2042(2011).

    [38] Yin X, Ye Z, Rho J et al. Photonic spin Hall effect at metasurfaces[J]. Science, 339, 1405-1407(2013).

    [39] Huang L L, Chen X Z, Mühlenbernd H et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 4, 2808(2013).

    [40] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [41] Khorasaninejad M, Ambrosio A, Kanhaiya P et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2, e1501258(2016).

    [42] Huang K, Dong Z G, Mei S T et al. Silicon multi-meta-holograms for the broadband visible light[J]. Laser & Photonics Reviews, 10, 500-509(2016).

    [43] Wen D D, Yue F Y, Li G X et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 6, 8241(2015).

    [44] Li X, Chen L W, Li Y et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2, e1601102(2016).

    [45] Song E Y, Lee S Y, Hong J et al. A double-lined metasurface for plasmonic complex-field generation[J]. Laser & Photonics Reviews, 10, 299-306(2016).

    [46] Li L, Li T, Wang S M et al. Plasmonic Airy beam generated by in-plane diffraction[J]. Physical Review Letters, 107, 126804(2011).

    [47] Zhou J X, Liu Y C, Ke Y G et al. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J]. Optics Letters, 40, 3193-3196(2015).

    [48] Song E Y, Lee G Y, Park H et al. Compact generation of Airy beams with C-aperture metasurface[J]. Advanced Optical Materials, 5, 1601028(2017).

    [49] Aieta F, Kats M A, Genevet P et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 347, 1342-1345(2015).

    [50] Wang S M, Wu P C, Su V C et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 8, 187(2017).

    [51] Wang S M, Wu P C, Su V C et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 13, 227-232(2018).

    [52] Miao Z Q, Wu Q, Li X et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 5, 041027(2015).

    [53] Zhang L, Chen X Q, Liu S et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 9, 4334(2018).

    [54] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 44, 247-262(1956).

    [55] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 392, 45-57(1984).

    [56] Kang M, Feng T H, Wang H T et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 20, 15882-15890(2012).

    [57] Huang L L, Chen X Z, Mühlenbernd H et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).

    [58] Ling X H, Zhou X X, Yi X N et al. Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence[J]. Light: Science & Applications, 4, e290(2015).

    [59] Biener G, Niv A, Kleiner V et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 27, 1875-1877(2002).

    [60] Hasman E, Bomzon Z, Niv A et al. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures[J]. Optics Communications, 209, 45-54(2002).

    [61] Chen X Z, Huang L L, Mühlenbernd H et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 3, 1198(2012).

    [62] Lin D, Fan P, Hasman E et al. Dielectric gradient metasurface optical elements[J]. Science, 345, 298-302(2014).

    [63] Khorasaninejad M, Chen W T, Devlin R C et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 352, 1190-1194(2016).

    [64] Luo X G, Pu M B, Li X et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 6, e16276(2017).

    [65] Berkhout G C G, Lavery M P J, Courtial J et al. . Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 105, 153601(2010).

    [66] Mair A, Vaziri A, Weihs G et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 412, 313-316(2001).

    [67] Beijersbergen M W. Allen L, van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 96, 123-132(1993).

    [68] Niv A, Gorodetski Y, Kleiner V et al. Topological spin-orbit interaction of light in anisotropic inhomogeneous subwavelength structures[J]. Optics Letters, 33, 2910-2912(2008).

    [69] Karimi E. Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 3, e167(2014).

    [70] Genevet P, Yu N F, Aieta F et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 100, 013101(2012).

    [71] Chimento P F. Alkemade P F A, Hooft G W, et al. Optical angular momentum conversion in a nanoslit[J]. Optics Letters, 37, 4946-4948(2012).

    [72] Guo Y H, Pu M B, Zhao Z Y et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 3, 2022-2029(2016).

    [73] Lu B R, Deng J N, Li Q et al. Reconstructing a plasmonic metasurface for a broadband high-efficiency optical vortex in the visible frequency[J]. Nanoscale, 10, 12378-12385(2018).

    [74] Pu M B, Li X, Ma X L et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 1, e1500396(2015).

    [75] Ma X L, Pu M B, Li X et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 5, 10365(2015).

    [76] Yue F Y, Wen D D, Xin J T et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 3, 1558-1563(2016).

    [77] Arbabi A, Faraon A. Fundamental limits of ultrathin metasurfaces[J]. Scientific Reports, 7, 43722(2017).

    [78] Ding X M, Monticone F, Zhang K et al. Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency[J]. Advanced Materials, 27, 1195-1200(2015).

    [79] Pfeiffer C, Grbic A. Controlling vector Bessel beams with metasurfaces[J]. Physical Review Applied, 2, 044012(2014).

    [80] Grady N K, Heyes J E, Chowdhury D R et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 340, 1304-1307(2013).

    [81] Luo W J, Xiao S Y, He Q et al. Photonic spin Hall effect with nearly 100% efficiency[J]. Advanced Optical Materials, 3, 1102-1108(2015).

    [82] Jiang S C, Xiong X, Hu Y S et al. High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection[J]. Physical Review B, 91, 125421(2015).

    [83] Xiao S Y, He Q, Huang X Q et al. Super imaging with a plasmonic metamaterial: role of aperture shape[J]. Metamaterials, 5, 112-118(2011).

    [84] Luo W J, Sun S L, Xu H X et al. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency[J]. Physical Review Applied, 7, 044033(2017).

    [85] Mei Q Q, Tang W X, Cui T J. A broadband Bessel beam launcher using metamaterial lens[J]. Scientific Reports, 5, 11732(2015).

    [86] Monnai Y, Jahn D, Withayachumnankul W et al. Terahertz plasmonic Bessel beamformer[J]. Applied Physics Letters, 106, 021101(2015).

    [87] Cai B G, Li Y B, Jiang W X et al. Generation of spatial Bessel beams using holographic metasurface[J]. Optics Express, 23, 7593-7601(2015).

    [88] Gao L H, Cheng Q, Yang J et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 4, e324(2015).

    [89] Berini P. Long-range surface plasmon polaritons[J]. Advances in Optics and Photonics, 1, 484-588(2009).

    [90] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [91] Kim S, Jin J, Kim Y J et al. High-harmonic generation by resonant plasmon field enhancement[J]. Nature, 453, 757-760(2008).

    [92] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 6, 737-748(2012).

    [93] Nie S M, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering[J]. Science, 275, 1102-1106(1997).

    [94] Anker J N, Hall W P, Lyandres O et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 7, 442-453(2008).

    [95] Zhang S P, Bao K, Halas N J et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 11, 1657-1663(2011).

    [96] Gramotnev D K, Bozhevolnyi S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 4, 83-91(2010).

    [97] Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration[J]. Optics Express, 13, 6645-6650(2005).

    [98] Bozhevolnyi S I, Volkov V S, Devaux E et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 440, 508-511(2006).

    [99] Gorodetski Y, Nechayev S, Kleiner V et al. Plasmonic Aharonov-Bohm effect: optical spin as the magnetic flux parameter[J]. Physical Review B, 82, 125433(2010).

    [100] Bliokh K Y, Gorodetski Y, Kleiner V et al. Coriolis effect in optics: unified geometric phase and spin-Hall effect[J]. Physical Review Letters, 101, 030404(2008).

    [101] Gorodetski Y, Niv A, Kleiner V et al. Observation of the spin-based plasmonic effect in nanoscale structures[J]. Physical Review Letters, 101, 043903(2008).

    [102] Cho S W, Park J, Lee S Y et al. Coupling of spin and angular momentum of light in plasmonic vortex[J]. Optics Express, 20, 10083-10094(2012).

    [103] Kim H, Park J, Cho S W et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens[J]. Nano Letters, 10, 529-536(2010).

    [104] Gorodetski Y, Shitrit N, Bretner I et al. Observation of optical spin symmetry breaking in nanoapertures[J]. Nano Letters, 9, 3016-3019(2009).

    [105] Ohno T, Miyanishi S. Study of surface plasmon chirality induced by Archimedes’ spiral grooves[J]. Optics Express, 14, 6285-6290(2006).

    [106] Yang S Y, Chen W B, Nelson R L et al. Miniature circular polarization analyzer with spiral plasmonic lens[J]. Optics Letters, 34, 3047-3049(2009).

    [107] Shen Z, Hu Z J, Yuan G H et al. Visualizing orbital angular momentum of plasmonic vortices[J]. Optics Letters, 37, 4627-4629(2012).

    [108] Tsai W Y, Huang J S, Huang C B. Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral[J]. Nano Letters, 14, 547-552(2014).

    [109] Ku C T, Lin H N, Huang C B. Direct observation of surface plasmon vortex and subwavelength focusing with arbitrarily-tailored intensity patterns[J]. Applied Physics Letters, 106, 053112(2015).

    [110] Mueller J P B, Capasso F. Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface[J]. Physical Review B, 88, 121410(2013).

    [111] Lin J. Mueller J P B, Wang Q, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 340, 331-334(2013).

    [112] Genevet P, Wintz D, Ambrosio A et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial[J]. Nature Nanotechnology, 10, 804-809(2015).

    [113] Du L P, Kou S S, Balaur E et al. Broadband chirality-coded meta-aperture for photon-spin resolving[J]. Nature Communications, 6, 10051(2015).

    [114] Huang L L, Chen X Z, Bai B F et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2, e70(2013).

    [115] Dahan N, Gorodetski Y, Frischwasser K et al. Geometric Doppler effect: spin-split dispersion of thermal radiation[J]. Physical Review Letters, 105, 136402(2010).

    [116] Shitrit N, Maayani S, Veksler D et al. Rashba-type plasmonic metasurface[J]. Optics Letters, 38, 4358-4361(2013).

    [117] Shitrit N, Yulevich I, Maguid E et al. Spin-optical metamaterial route to spin-controlled photonics[J]. Science, 340, 724-726(2013).

    [118] Shitrit N, Yulevich I, Kleiner V et al. Spin-controlled plasmonics via optical Rashba effect[J]. Applied Physics Letters, 103, 211114(2013).

    [119] Yulevich I, Maguid E, Shitrit N et al. Optical mode control by geometric phase in quasicrystal metasurface[J]. Physical Review Letters, 115, 205501(2015).

    [120] Xiao S Y, Zhong F, Liu H et al. Flexible coherent control of plasmonic spin-Hall effect[J]. Nature Communications, 6, 8360(2015).

    [121] Zhang Z J, Luo J, Song M W et al. Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography[J]. Applied Physics Letters, 107, 241904(2015).

    [122] Kim J Y, Kim H, Kim B H et al. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly[J]. Nature Communications, 7, 12911(2016).

    [123] Chen W X, Tymchenko M, Gopalan P et al. Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces[J]. Nano Letters, 15, 5254-5260(2015).

    [124] Huang Y W, Chen W T, Tsai W Y et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 15, 3122-3127(2015).

    [125] Montelongo Y. Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences, 111, 12679-12683(2014).

    [126] Zhang X H, Jin J J, Wang Y Q et al. Metasurface-based broadband hologram with high tolerance to fabrication errors[J]. Scientific Reports, 6, 19856(2016).

    [127] Chen W T, Yang K Y, Wang C M et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 14, 225-230(2014).

    [128] Genevet P, Capasso F. Holographic optical metasurfaces: a review of current progress[J]. Reports on Progress in Physics, 78, 024401(2015).

    [129] Torner L, Torres J P, Carrasco S. Digital spiral imaging[J]. Optics Express, 13, 873-881(2005).

    [130] Monroe D. Focus: big twist for electron beam[J]. Physics, 8, 7(2015).

    [131] Oemrawsingh S S R, Eliel E R et al. . Production and characterization of spiral phase plates for optical wavelengths[J]. Applied Optics, 43, 688-694(2004).

    [132] Chen L X, Lei J J, Romero J. Quantum digital spiral imaging[J]. Light: Science & Applications, 3, e153(2014).

    [133] Ghai D P, Senthilkumaran P, Sirohi R S. Single-slit diffraction of an optical beam with phase singularity[J]. Optics and Lasers in Engineering, 47, 123-126(2009).

    [134] Leach J, Padgett M J, Barnett S M et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 88, 257901(2002).

    [135] Pors A, Nielsen M G, Bozhevolnyi S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J]. Optica, 2, 716-723(2015).

    [136] Wen D D, Yue F Y, Kumar S et al. Metasurface for characterization of the polarization state of light[J]. Optics Express, 23, 10272-10281(2015).

    [137] Genevet P, Lin J, Kats M A et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 3, 1278(2012).

    [138] Liu A P, Rui G H, Ren X F et al. Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens[J]. Optics Express, 20, 24151-24159(2012).

    [139] Yang Y M, Wang W Y, Moitra P et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 14, 1394-1399(2014).

    [140] Xu H X, Ma S J, Luo W J et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces[J]. Applied Physics Letters, 109, 193506(2016).

    [141] Li L L, Cui T J, Ji W et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 8, 197(2017).

    [142] Chen K, Feng Y J, Monticone F et al. A reconfigurable active Huygens' metalens[J]. Advanced Materials, 29, 1606422(2017).

    [143] Qu C, Ma S J, Hao J M et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 115, 235503(2015).

    [144] Xu H X, Wang G M, Cai T et al. Tunable Pancharatnam-Berry metasurface for dynamical and high-efficiency anomalous reflection[J]. Optics Express, 24, 27836-27848(2016).

    [145] Kim T T, Kim H, Kenney M et al. Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces[J]. Advanced Optical Materials, 6, 1700507(2018).

    [146] Zhu W M, Song Q H, Yan L B et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Advanced Materials, 27, 4739-4743(2015).

    [147] Balthasar Mueller J P, Rubin N A, Devlin R C et al. . Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 118, 113901(2017).

    [148] Zhang F, Pu M B, Luo J et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 44, 319-325(2017).

    [149] Zhang F, Pu M B, Li X et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions[J]. Advanced Functional Materials, 27, 1704295(2017).

    Zhong Hu, Tao Xu, Rong Tang, Huijie Guo, Shiyi Xiao. Geometric-Phase Metasurfaces: from Physics to Applications[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202408
    Download Citation