• Laser & Optoelectronics Progress
  • Vol. 52, Issue 10, 100003 (2015)
Ma Chengju*, Xu Weifeng, Li Jiamei, Yang Mei, Liu Keyang, and Li Mengting
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop52.100003 Cite this Article Set citation alerts
    Ma Chengju, Xu Weifeng, Li Jiamei, Yang Mei, Liu Keyang, Li Mengting. Research Progress of Gas Sensor Based on Microfiber Evanescent Field Effects[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100003 Copy Citation Text show less
    References

    [1] L M Tong, R R Gattass, J B Ashcom, et al.. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968): 816-819.

    [2] L M Tong, J Lou, Z Ye, et al.. Self-modulated taper drawing of silica nanowires[J]. Nanotechnology, 2005, 16(9): 1445-1448.

    [3] S G Leon-Saval, T A Birks, W J Wadsworth, et al.. Supercontinuum generation in submicron fibre waveguides[J]. Opt Express, 2004, 12(13): 2864-2869.

    [4] Liu Hongjuan. Fabrication of Submicro-Diameter Fiber and Stimulated Raman Scattering Effect in It[D]. Jiangxi: Jiangxi Normal University, 2005.

    [5] F X Gu, L Zhang, L M Tong, et al.. Polymer single-nanowire optical sensors[J]. Nano Lett, 2008, 8(9): 2757-2761.

    [6] Gu Fuxing. Optical Waveguiding Nanowires and Their Sensing Applications[D]. Zhejiang: Zhejiang University, 2012.

    [7] G Brambilla. Optical fibre nanowires and microwires: A review[J]. Journal of Optics, 2010, 12(4): 043001.

    [8] Yang Jianchun, Xu Longjun, Zhang Peng. Review on optical fiber evanescent wave gas sensor[J]. Optical Technique, 2008, 34(4): 562-567.

    [9] Liu Jian. A derivation of Goos-Hanchen shift from the effective penetration depth of evanescent waves[J]. College Physics, 2002, 21(9): 36-37.

    [10] Shi Shunxiang, Wang Xueen, Liu Jinsong. Physical Optics and Applied Optics[M]. Xi′an: Xidian University Press, 2008: 213-216.

    [11] H Tai, H Tanaka, T Yoshine. Fiber-optic evanescent-wave methane-gas sensor using optical absorption for the 3.392 mm line of a He-Ne laser[J]. Opt Lett, 1987, 12(6): 437-439.

    [12] J Villatoro, D Antonio, L C Jose, et al.. In-line highly sensitive hydrogen sensor based on palladium-coated singlemode tapered fibers[J]. IEEE Sensors Journal, 2003, 3(4): 533-537.

    [13] J Villatoro, D Monzón-Hernández. Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers[J]. Opt Express, 2005, 13(13): 5087-5092.

    [14] J Moreno, F J Arregui, I R Matias. Fiber optic ammonia sensing employing novel thermoplastic polyurethane membranes [J]. Sensors and Actuators B, 2005, 105(2): 419-424.

    [15] D Zalvidea, A Diez, J L Cruz, et al.. Hydrogen sensor based on a palladium-coated-fibre-taper with improved timeresponse[J]. Sensors and Actuators B: Chemical, 2006, 114(1): 268-274.

    [16] R Jarzebinska, S Korposh, S James, et al.. Optical gas sensor fabrication based on porphyrin-anchored electrostatic self-assembly onto tapered optical fibers[J]. Analytical Letters, 2012, 45(10): 1297-1309.

    [17] Y C Cao, W Jin, L Hoi Ho, et al.. Evanescent-wave photoacoustic spectroscope with optical micro/nano fibers[J]. Opt Lett, 2012, 37(2): 214-216.

    [18] Z T Cao, J Lan, S Wang, et al.. Trench-embedding fiber taper sensor fabricated by a femtosecond laser for gas refractive index sensing[J]. Appl Opt, 2014, 53(6): 1028-1032.

    [19] L Jia, Y Wu, B C Yao, et al.. A sensitivity enhanced gas sensor based on carbon nanotubes around microfiber[C]. SPIE, 2012, 8351: 835120.

    [20] Y Wu, B C Yao, A Q Zhang, et al.. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing[J]. Opt Lett, 2014, 39(5): 1235-1237.

    [21] Z Tao, L J Ma, H B Bai, et al.. Design and fabrication of a novel core-suspended optic fiber for distributed gas sensor [J]. Photonic Sensors, 2014, 4(2): 97-101.

    [22] W Jin, H L Ho, Y C Cao, et al.. Gas detection with micro-and nano-engineered optical fibers[J]. Optical Fiber Technology, 2013, 19(6): 741-759.

    [23] Yi Weiqi. Study of High Quality Subwavelength Microfiber Fabrication Process and Microknot Gas Sensing Property [D]. Sichuan: University of Electronic Science and Technology of China, 2013.

    [24] Song Zhangqi, Wei Zhengtong, Zhang Xueliang, et al.. Research on sensing technologies based on optical micro-nano fiber evanescent field[J]. Chinese J Lasers, 2013, 40(s1): s105005.

    [25] Z T Wei, N Jiang, Z Q Song, et al.. KrF excimer laser-fabricated Bragg grating in optical microfiber made from preetched conventional photosensitive fiber[J]. Chin Opt Lett, 2013, 11(4): 040603.

    [26] Z Q Song, Y Yu, Z L Zhang, et al.. Optical microfiber phase modulator directly driven with low-power light[J]. Chin Opt Lett, 2014, 12(9): 090606.

    [27] Li Guoxiang, Wang Shanshan, Yang Hongjuan, et al.. Study of seawater salinity sensor based on embedded microfiber ring resonator[J]. Laser & Optoelectronic Progress, 2014, 51(5): 050603.

    CLP Journals

    [1] Liu Yinggang, Zhang Wei. Temperature Characteristics of Micro-Nanofiber Bragg Grating Surrounded with Liquids[J]. Laser & Optoelectronics Progress, 2017, 54(4): 40605

    [2] Liu Jianxia, Xue Li, Chen Gongdai, Li Zhijun. Sensitivity of Evanescent Field Sensors Based on Eccentric Core Optical Fiber[J]. Laser & Optoelectronics Progress, 2016, 53(7): 71301

    Ma Chengju, Xu Weifeng, Li Jiamei, Yang Mei, Liu Keyang, Li Mengting. Research Progress of Gas Sensor Based on Microfiber Evanescent Field Effects[J]. Laser & Optoelectronics Progress, 2015, 52(10): 100003
    Download Citation