• Infrared and Laser Engineering
  • Vol. 50, Issue 8, 20210352 (2021)
Runyu Wang1、2 and Qing Wang1、2、*
Author Affiliations
  • 1School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 2Key Laboratory of Photoelectronic Imaging Technology and System Ministry of Education, Beijing 100081, China
  • show less
    DOI: 10.3788/IRLA20210352 Cite this Article
    Runyu Wang, Qing Wang. Operation of femtosecond Kerr-lens mode-locked laser with all-normal dispersion at 2.4 μm (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210352 Copy Citation Text show less
    References

    [1] Sunqiang Pan, Pengbin Hu, Zhemin Chen, et al. Measurement of vapor hydrogen peroxide based on mid infrared absorption spectroscopy. Spectroscopy and Spectral Analysis, 41, 1102-1106(2021).

    [2] Yue Hou, Kejin Huang, Guanyi Yu, et al. Development on high precision CO2 isotope measurement system based on infrared TDLAS technology. Infrared and Laser Engineering, 50, 20200083(2021).

    [3] Bin Xue, Tuo Zhao, Hanzhong Wu, et al. Speed measurement using femtosecond optical frequency comb based on phase signal processing. Infrared and Laser Engineering, 47, 0206002(2018).

    [4] S B Mirov, V V Fedorov, D Martyshkin, et al. Progress in mid-IR lasers based on Cr and Fe-doped II-VI chalcogenides. IEEE Journal of Selected Topics in Quantum Electronics, 21, 1601719(2015).

    [5] I T Sorokina, E Sorokin. Femtosecond Cr2+-based lasers. IEEE Journal of Selected Topics in Quantum Electronics, 21, 1601519(2015).

    [6] Yunpeng Wang, Fei Wang, Dongxu Zhang. Optical properties of Cr2+: ZnSe single crystal grown under high temperature and high pressure.. Chinese Optics, 8, 615-620(2015).

    [7] Changyou Liu, Wanqi Jie, Binbin Zhang, et al. Growth and spectral properties of Cr2+: ZnSe crystals for mid-infrared lasers. Journal of Synthetic Crystals, 40, 1382-1386(2011).

    [8] Yuqin Zhang, Guoying Feng, Xiang Gao. Comparative study on spectral charateristics of Cr2+: ZnS and Fe2+: ZnS. High Power Laser and Particle Beams, 26, 82-85(2014).

    [9] M Baumgartl, C Lecaplain, A Hideur, et al. 66 W average power from a microjoule-class sub-100 fs fiber oscillator. Optics Letters, 37, 1640-1642(2012).

    [10] Vodopyanov K L, Sokin E, Sokina I, et al. 4.45.4 µm frequency comb from a subharmonic OPGaAs OPO pumped by a femtosecond Cr: ZnSe laser[C]Advances in Optical Materials, Optical Society of America, 2011: AME2.

    [11] A Gordon, F X Kartner. Scaling of keV HHG photon yield with drive wavelength. Optics Express, 13, 2941-2947(2005).

    [12] J W Zhang, K F Mak, N Nagl, et al. Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1. Light-Science & Applications, 7, 6(2018).

    [13] Q Wang, J Zhang, A Kessel, et al. Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes. Optics Letters, 44, 2566-2569(2019).

    [14] Sokina I T, Sokin E, Carrig T J. Femtosecond pulse generation from a SESAM modelocked Cr: ZnSe laser[C]Conference on Lasers ElectroOpticsQuantum Electronics Laser Science Conference Photonic Applications Systems Technologies, Optical Society of America, 2006: CMQ2.

    [15] M N Cizmeciyan, H Cankaya, A Kurt, et al. Kerr-lens mode-locked femtosecond Cr2+: ZnSe laser at 2420 nm. Optics Letters, 34, 3056-3058(2009).

    [16] Li Zheng, Huibo Wang, Wenlong Tian, et al. LD-pumped high-repetition-rate all-solid-state femtosecond lasers (Invited). Infrared and Laser Engineering, 49, 20201069(2020).

    [17] E Sorokin, N Tolstik, K I Schaffers, et al. Femtosecond SESAM-modelocked Cr:ZnS laser. Optics Express, 20, 28947-28952(2012).

    [18] Slobodchikov E, Moulton P F. 1GWpeakpower, Cr: ZnSe laser[C]Laser Applications to Photonic Applications, Optical Society of America, 2011: PAPD10.

    [19] Tolstik N, Sokin E, Sokina I T, et al. Wattlevel Kerrlens modelocked Cr: ZnS laser at 2.4 μm[C]2013 Conference on Lasers ElectroOptics, Optical Society of America, 2013: CTh1H. 2.

    [20] Moskalev I S, Fedov V V, Mirov S B. Selfstarting Kerrmodelocked polycrystalline Cr2+: ZnSe laser[C]2008 Conference on Lasers ElectroOptics & Quantum Electronics Laser Science Conference, Optical Society of America, 2008: CFI3.

    [21] F O Ilday, J R Buckley, W G Clark, et al. Self-similar evolution of parabolic pulses in a laser. Physical Review Letters, 92, 4(2004).

    [22] W H Renninger, A Chong, F W Wise. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 18, 389-398(2012).

    [23] Sokina I T, Sokin E, Carrig T J, et al. A SESAM passively modelocked Cr: ZnS laser[C]Advanced SolidState Photonics, Optical Society of America, 2006: TuA4.

    [24] Vasilyev S, Moskalev I, Mirov M, et al. Kerrlens modelocked dle IR polycrystalline Cr: ZnS laser with a repetition rate 1.2 GHz[C]Lasers Congress 2016 (ASSL, LSC, LAC), Optical Society of America, 2016: AW1A. 2.

    [25] C Hu, J Zhu, Z Wang, et al. Kerr-lens mode-locked polycrystalline Cr: ZnS femtosecond laser pumped by a monolithic Er: YAG laser. Chinese Physics B, 26, 014206(2017).

    [26] Nagl N, Grobmeyer S, Potzlberger M, et al. Directly diodepumped fewopticalcycle Cr: ZnS laser at 800 mW of average power[C]Conference on Lasers ElectroOptics, Optical Society of America, 2020: SF3H.5.

    [27] S Vasilyev, I Moskalev, V Smolski, et al. Kerr-lens mode-locked Cr: ZnS oscillator reaches the spectral span of an optical octave. Optics Express, 29, 2458-2465(2021).

    [28] A Barh, J Heidrich, B O Alaydin, et al. Watt- level and sub-100-fs self-starting mode-locked 2.4 μm Cr: ZnS oscillator enabled by GaSb-SESAMs. Optics Express, 29, 5934-5946(2021).

    [29] V Magni, G Cerullo, Silvestri S De. Closed form Gaussian beam analysis of resonators containing a Kerr medium for femtosecond lasers. Optics Communications, 101, 365-370(1993).

    [30] G Cerullo, Silvestri S De, V Magni, et al. Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers. Optics Letters, 19, 807-809(1994).

    Runyu Wang, Qing Wang. Operation of femtosecond Kerr-lens mode-locked laser with all-normal dispersion at 2.4 μm (Invited)[J]. Infrared and Laser Engineering, 2021, 50(8): 20210352
    Download Citation