• Infrared and Laser Engineering
  • Vol. 50, Issue 9, 20200410 (2021)
Bingqing Xu1、2、3, Yan Han4, Wenjing Xu1、2、3, Jun Zheng1、2、3, and Dongsong Sun1、2、3
Author Affiliations
  • 1School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
  • 2Chinese Academy of Sciences Key Laboratory of Geospace Environment, Hefei 230026, China
  • 3Anhui Mengcheng Geophysics National Observation and Research Station, Bozhou 233527, China
  • 4Northwest Institute of Nuclear Technology of China, Xi’an 710024, China
  • show less
    DOI: 10.3788/IRLA20200410 Cite this Article
    Bingqing Xu, Yan Han, Wenjing Xu, Jun Zheng, Dongsong Sun. Design and simulation of Raman lidar with small field of view for atmospheric temperature and humidity detection[J]. Infrared and Laser Engineering, 2021, 50(9): 20200410 Copy Citation Text show less
    Pure rotational Raman spectrum of N2 and O2
    Fig. 1. Pure rotational Raman spectrum of N2 and O2
    (a) Ratio of rotational Raman echo signal intensities ; (b) Comparison of statistical temperature uncertainty between 532 nm and 354.8 nm Raman lidar systems(a)转动拉曼回波信号强度之比;(b) 532 nm和354.8 nm拉曼激光雷达系统温度不确定度的比较
    Fig. 2. (a) Ratio of rotational Raman echo signal intensities ; (b) Comparison of statistical temperature uncertainty between 532 nm and 354.8 nm Raman lidar systems (a)转动拉曼回波信号强度之比 ;(b) 532 nm和354.8 nm拉曼激光雷达系统温度不确定度的比较
    Light path diagram of the Raman lidar system
    Fig. 3. Light path diagram of the Raman lidar system
    Temperature sensitivity of pure rotational Raman signals
    Fig. 4. Temperature sensitivity of pure rotational Raman signals
    Statistical temperature uncertainty versus filter center wavelength for different filter bandwidth in the daytime. (a) Δλ1=Δλ2=0.1 nm; (b) Δλ1=Δλ2=0.3 nm; (c) Δλ1=0.3 nm, Δλ2=0.5 nm; (d) Δλ1=0.3 nm, Δλ2=0.8 nm
    Fig. 5. Statistical temperature uncertainty versus filter center wavelength for different filter bandwidth in the daytime. (a) Δλ1=Δλ2=0.1 nm; (b) Δλ1=Δλ2=0.3 nm; (c) Δλ1=0.3 nm, Δλ2=0.5 nm; (d) Δλ1=0.3 nm, Δλ2=0.8 nm
    Statistical temperature uncertainty versus filter center wavelengths. (a), (b) Contour map of the variation of the statistical temperature uncertainty in daytime and nighttime detection with central wavelength CWL1 and CWL2; (c), (d) CWL1 takes a fixed value, the statistical temperature uncertainty changes with CWL2 in daytime and nighttime; (e), (f) CWL2 takes a fixed value, the statistical temperature uncertainty changes with CWL1 in daytime and nighttime
    Fig. 6. Statistical temperature uncertainty versus filter center wavelengths. (a), (b) Contour map of the variation of the statistical temperature uncertainty in daytime and nighttime detection with central wavelength CWL1 and CWL2; (c), (d) CWL1 takes a fixed value, the statistical temperature uncertainty changes with CWL2 in daytime and nighttime; (e), (f) CWL2 takes a fixed value, the statistical temperature uncertainty changes with CWL1 in daytime and nighttime
    Contour map of statistical temperature uncertainty varying with optical density
    Fig. 7. Contour map of statistical temperature uncertainty varying with optical density
    (a) Statistical temperature uncertainty; (b) Statistical error of water vapor mixing ratio in the daytime
    Fig. 8. (a) Statistical temperature uncertainty; (b) Statistical error of water vapor mixing ratio in the daytime
    ParameterValue
    Temporal resolution/s1200
    Spatial resolution/m105
    Emission optical efficiency0.8
    Quantum efficiency of PMT0.25
    Overlap function1
    Table 1. Simulation parameters of Raman lidar system
    DeviceParameterValue
    LaserWavelength/nm354.8
    Repetition rate/Hz50
    Pulse energy/mJ200
    Divergence angle/mrad<0.5
    Beam expanderBeam-expansion factor10
    TelescopeDiameter/mm400
    Field of view/mrad0.05
    Table 2. Key parameters of Raman lidar system
    Δλ1/nm Δλ2/nm ΔT/K
    0.10.15.35
    0.30.33.11
    0.30.52.63
    0.30.82.36
    Table 3. Average value of statistical temperature uncertainty
    IF0IF1a/IF1bIF2IF3IF4
    Center wavelength/nm355354.15353.3407.7386.8
    Band width/nm8.50.30.50.30.5
    Peak transmission0.560.590.520.750.7
    Optical density53677
    Table 4. Parameters of interference filter
    Bingqing Xu, Yan Han, Wenjing Xu, Jun Zheng, Dongsong Sun. Design and simulation of Raman lidar with small field of view for atmospheric temperature and humidity detection[J]. Infrared and Laser Engineering, 2021, 50(9): 20200410
    Download Citation