• Photonics Research
  • Vol. 12, Issue 1, 61 (2024)
Bowen Zeng1、2, Chenxia Li1、4, Bo Fang3, Zhi Hong2, and Xufeng Jing1、2、*
Author Affiliations
  • 1Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
  • 2Centre for THz Research, China Jiliang University, Hangzhou 310018, China
  • 3College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou 310018, China
  • 4e-mail: lichenxiacjlu@163.com
  • show less
    DOI: 10.1364/PRJ.506885 Cite this Article Set citation alerts
    Bowen Zeng, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing. Flexible tuning of multifocal holographic imaging based on electronically controlled metasurfaces[J]. Photonics Research, 2024, 12(1): 61 Copy Citation Text show less
    References

    [1] W. Zhu, M. Jiang, H. Guan. Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials. Photonics Res., 5, 684-688(2017).

    [2] M. Jiang, W. Zhu, H. Guan. Giant spin splitting induced by orbital angular momentum in an epsilon-near-zero metamaterial slab. Opt. Lett., 42, 3259-3262(2017).

    [3] H. Guan, J. Hong, X. Wang. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv. Opt. Mater., 9, 2100245(2021).

    [4] Z. Huang, M. Wang, Y. Li. Highly efficient second harmonic generation of thin film lithium niobate nanograting near bound states in the continuum. Nanotechnology, 32, 325207(2021).

    [5] X. He, W. Cao. Tunable terahertz hybrid metamaterials supported by 3D Dirac semimetals. Opt. Mater. Express, 13, 413-422(2023).

    [6] X. He, F. Lin, F. Liu. 3D Dirac semimetals supported tunable terahertz BIC metamaterials. Nanophotonics, 11, 4705-4714(2022).

    [7] J. Peng, X. He, C. Shi. Investigation of graphene supported terahertz elliptical metamaterials. Phys. E, 124, 114309(2020).

    [8] J. Leng, J. Peng, A. Jin. Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol., 146, 107570(2022).

    [9] J. Li, J. Li, C. Zheng. Spectral amplitude modulation and dynamic near-field displaying of all-silicon terahertz metasurfaces supporting bound states in the continuum. Appl. Phys. Lett., 119, 241105(2021).

    [10] J. Li, J. Li, C. Zheng. Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces. Appl. Phys. Lett., 118, 221110(2021).

    [11] J. Li, Z. Yue, J. Li. Diverse terahertz wavefront manipulations empowered by the spatially interleaved metasurfaces. Sci. China Inf. Sci., 66, 132301(2023).

    [12] J. Li, Z. Yue, J. Li. Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum. Opt. Laser Technol., 161, 109173(2023).

    [13] X. Liu, S. Li, C. He. Multiple orbital angular momentum beams with high-purity of transmission-coding metasurface. Adv. Theory Simul., 6, 2200842(2023).

    [14] S. J. Li, Z. Y. Li, G. S. Huang. Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 17, 62501(2022).

    [15] S. J. Li, B. W. Han, Z. Y. Li. Transmissive coding metasurface with dual-circularly polarized multi-beam. Opt. Express, 30, 26362-26376(2022).

    [16] X. Lu, X. Zeng, H. Lv. Polarization controllable plasmonic focusing based on nanometer holes. Nanotechnology, 31, 135201(2020).

    [17] H. Lv, X. Lu, Y. Han. Metasurface cylindrical vector light generators based on nanometer holes. New J. Phys., 21, 123047(2019).

    [18] H. Lv, X. Lu, Y. Han. Multifocal metalens with a controllable intensity ratio. Opt. Lett., 44, 2518-2521(2019).

    [19] H. Wang, L. Liu, C. Zhou. Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics, 8, 317-324(2019).

    [20] M. R. Akram, G. Ding, K. Chen. Ultra-thin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv. Mater., 32, 1907308(2020).

    [21] J. Zhang, X. Wei, I. D. Rukhlenko. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics, 7, 265-271(2020).

    [22] M. R. Akram, M. Q. Mehmood, X. Bai. High efficiency ultra-thin transmissive metasurfaces. Adv. Opt. Mater., 7, 1801628(2019).

    [23] M. R. Akram, X. Bai, R. Jin. Photon spin Hall effect based ultra-thin transmissive metasurface for efficient generation of OAM waves. IEEE Trans. Antennas Propag., 67, 4650-4658(2019).

    [24] J. Li, R. Jin, J. Geng. Design of a broadband metasurface Luneburg lens for full-angle operation. IEEE Trans. Antennas Propag., 67, 2442-2451(2019).

    [25] X. Jing, S. Jin, Y. Tian. Analysis of the sinusoidal nanopatterning grating structure. Opt. Laser Technol., 48, 160-166(2013).

    [26] X. Jing, Y. Xu, H. Gan. High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region. IEEE Access, 7, 144945(2019).

    [27] L. Jiang, B. Fang, Z. Yan. Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure. Opt. Laser Technol., 123, 105949(2020).

    [28] B. Fang, Z. Cai, Y. Peng. Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials. J. Electromagn. Waves Appl., 33, 1375-1390(2019).

    [29] B. Fang, B. Li, Y. Peng. Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure. Microw. Opt. Technol. Lett., 61, 2385-2391(2019).

    [30] W. Wang, X. Jing, J. Zhao. Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure. Opt. Appl., 47, 183-198(2017).

    [31] L. Jiang, B. Fang, Z. Yan. Improvement of unidirectional scattering characteristics based on multiple nanospheres array. Microw. Opt. Technol. Lett., 62, 2405-2414(2020).

    [32] X. Jing, X. Gui, P. Zhou. Physical explanation of Fabry-Pérot cavity for broadband bilayer metamaterials polarization converter. J. Lightwave Technol., 36, 2322-2327(2018).

    [33] R. Xia, X. Jing, X. Gui. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt. Mater. Express, 7, 977-988(2017).

    [34] J. Zhao, X. Jing, W. Wang. Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Opt. Laser Technol., 95, 56-62(2017).

    [35] Y. Q. Zhang, X. Y. Zeng, L. Ma. Manipulation for superposition of orbital angular momentum states in surface plasmon polaritons. Adv. Opt. Mater., 7, 1900372(2019).

    [36] Y.-Q. Zhang, X.-Y. Zeng, R.-R. Zhang. Generation of a plasmonic radially polarized vector beam with linearly polarized illumination. Opt. Lett., 43, 4208-4211(2018).

    [37] Z. Li, H. Liu, X. Zhang. Metasurface of deflection prism phases for generating non-diffracting optical vortex lattices. Opt. Express, 26, 28228-28237(2018).

    [38] C. Zheng, J. Li, J. Li. All-silicon chiral metasurfaces and wavefront shaping assisted by interference. Sci. China Phys. Mech. Astron., 64, 114212(2021).

    [39] C. L. Zheng, J. Li, J. Y. Liu. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface. Laser Photonics Rev., 16, 2200236(2022).

    [40] R. Y. Wu, C. B. Shi, S. Liu. Addition theorem for digital coding metamaterials. Adv. Opt. Mater., 6, 1701236(2018).

    [41] Z. Yue, J. T. Li, J. Li. Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion. Opto-Electron. Sci., 1, 210014(2022).

    [42] W. B. Jeon, J. S. Moon, K.-Y. Kim. Plug-and-play single-photon devices with efficient fiber-quantum dot interface. Adv. Quantum Technol., 5, 2200022(2022).

    [43] I. L. Paiva, R. Lenny, E. Cohen. Geometric phases and the Sagnac effect: foundational aspects and sensing applications. Adv. Quantum Technol., 5, 2100121(2022).

    [44] H. B. Yang, N. Y. Kim. Microcavity exciton-polariton quantum spin fluids. Adv. Quantum Technol., 5, 2100137(2022).

    [45] S. Krasikov, A. Tranter, A. Bogdanov. Intelligent metaphotonics empowered by machine learning. Opto-Electron. Adv., 5, 210147.

    [46] K. C. Balram, K. Srinivasan. Piezoelectric optomechanical approaches for efficient quantum microwave-to-optical signal transduction: the need for co-design. Adv. Quantum Technol., 5, 2100095(2022).

    [47] W.-H. Cai, Y. Tian, S. Wang. Optimized design of the lithium niobate for spectrally-pure-state generation at MIR wavelengths using metaheuristic algorithm. Adv. Quantum Technol., 5, 2200028(2022).

    [48] Y. X. Zhang, M. Pu, J. Jin. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron. Adv., 5, 220058(2022).

    [49] C. Zhang, T. Xue, J. Zhang. Terahertz meta-biosensor based on high-Q electrical resonance enhanced by the interference of toroidal dipole. Biosens. Bioelectron., 214, 114493(2022).

    [50] C. Zhang, T. Xue, J. Zhang. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics, 11, 101-109(2022).

    [51] J. Zhang, N. Mu, L. Liu. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency. Biosens. Bioelectron., 185, 113241(2021).

    Bowen Zeng, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing. Flexible tuning of multifocal holographic imaging based on electronically controlled metasurfaces[J]. Photonics Research, 2024, 12(1): 61
    Download Citation