• Acta Optica Sinica
  • Vol. 44, Issue 2, 0200006 (2024)
Shulong Bao1,*, Huan Li2,**, Fan Sun3, Feng Lu4..., Zhiqing Zhang5, Xiaojie Chen6, Shaofan Tang1, Hua Liang2 and Yanhua Zhao2|Show fewer author(s)
Author Affiliations
  • 1Environmental Resources and Meteorological Observation Field Office, Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • 2Infrared Camera Research Department, Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • 3Technology Management Department, Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China
  • 4National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
  • 5FengYun Meteorological Satellite Engineering Management, China Meteorological Administration, Beijing 100081, China
  • 6Meteorological Environment Satellite General Department, Shanghai Academy of Spaceflight Technology, Shanghai 201100, China
  • show less
    DOI: 10.3788/AOS231414 Cite this Article Set citation alerts
    Shulong Bao, Huan Li, Fan Sun, Feng Lu, Zhiqing Zhang, Xiaojie Chen, Shaofan Tang, Hua Liang, Yanhua Zhao. Review of Real-Time Space-Based Optical Detection Technology for Global Total Lightning[J]. Acta Optica Sinica, 2024, 44(2): 0200006 Copy Citation Text show less
    Lightning spectrum detected by NASA U-2 aircraft[35]
    Fig. 1. Lightning spectrum detected by NASA U-2 aircraft[35]
    Details of three characteristic spectral lines of lightning's oxygen atom[35-36]
    Fig. 2. Details of three characteristic spectral lines of lightning's oxygen atom[35-36]
    Polar orbital lightning imager TRMM-LIS of the United States[41-43]
    Fig. 3. Polar orbital lightning imager TRMM-LIS of the United States[41-43]
    GLM on the GOES-R and GOES-S satellite of the United States[45-47]
    Fig. 4. GLM on the GOES-R and GOES-S satellite of the United States[45-47]
    CCD sensor of the GLM on the GOES-R satellite of the United States[48-49]
    Fig. 5. CCD sensor of the GLM on the GOES-R satellite of the United States[48-49]
    Geostationary lightning imager MTG-LI of Europe[50-51]
    Fig. 6. Geostationary lightning imager MTG-LI of Europe[50-51]
    ISUAL on the Formosat-2 satellite[59]. (a) SP; (b) imager; (c) AP
    Fig. 7. ISUAL on the Formosat-2 satellite[59]. (a) SP; (b) imager; (c) AP
    Research and development process of FY-4A lightning mapping imager
    Fig. 8. Research and development process of FY-4A lightning mapping imager
    Difference between ground observation and space observation of lightning. (a) Lightning observed on ground; (b) lightning observed on space
    Fig. 9. Difference between ground observation and space observation of lightning. (a) Lightning observed on ground; (b) lightning observed on space
    Response range of the sensor used for the lightning detector
    Fig. 10. Response range of the sensor used for the lightning detector
    Spatial resolution selection of FY-4A lightning mapping imager. (a) Lightning and background observed on space; (b) lightning detection resolution of lightning mapping imager
    Fig. 11. Spatial resolution selection of FY-4A lightning mapping imager. (a) Lightning and background observed on space; (b) lightning detection resolution of lightning mapping imager
    Lightning pulse duration and the lightning detection frame period selection
    Fig. 12. Lightning pulse duration and the lightning detection frame period selection
    Comparison between lightning and sunlight background spectra[54]
    Fig. 13. Comparison between lightning and sunlight background spectra[54]
    Relationship between center wavelength and incident angle drift of ultra narrow band filter
    Fig. 14. Relationship between center wavelength and incident angle drift of ultra narrow band filter
    Test curves of center wavelength and bandwidth of ultra narrow band filter
    Fig. 15. Test curves of center wavelength and bandwidth of ultra narrow band filter
    Overall technology for real-time detection of weak targets from multiple transient point sources in a complex background on space
    Fig. 16. Overall technology for real-time detection of weak targets from multiple transient point sources in a complex background on space
    FY-4A lightning mapping imager and its installation on satellite
    Fig. 17. FY-4A lightning mapping imager and its installation on satellite
    Some application results of FY-4A lightning mapping imager[68]
    Fig. 18. Some application results of FY-4A lightning mapping imager[68]
    Schematic diagram of polar lightning optical stereo detection on space
    Fig. 19. Schematic diagram of polar lightning optical stereo detection on space
    Lightning types in low altitude, high altitude and near space
    Fig. 20. Lightning types in low altitude, high altitude and near space
    VLF/LF lightning detection systemProbability of detection /%Detection rangeType of the detect lightningPositioning error /m
    WWLLN10GlobalStrong intracloud lightning,cloud-to-ground lightning>10000
    NLDN

    30-60(intracloud lightning);

    95(cloud-to-ground lightning)

    AreaIntracloud lightning,cloud-to-ground lightning150-200
    GLD 360

    80(the Northern Hemisphere);

    10-80(the Southern Hemisphere)

    GlobalIntracloud lightning,cloud-to-ground lightning1500-2500
    ADTD95AreaCloud-to-ground lightning300
    Table 1. Internationally representative ground lightning detection systems in VLF/LF band
    VHF lightning detection systemProbability of detection /%Detection rangeType of the detect lightningPositioning error /m
    LDAR> 90(in the detection network)AreaIntracloud lightning,cloud-to-ground lightningHorizontal:1000(in the detection network)
    LMAMultiple applications for research on refined lightning channels without considering probability of detectionAreaIntracloud lightning,cloud-to-ground lightning

    Horizontal:6-12;

    vertical:20-30

    ENTLN50(intracloud lightning)、95(cloud-to-ground lightning)AreaIntracloud lightning,cloud-to-ground lightningHorizontal:10-500
    Table 2. Internationally representative ground lightning detection systems in VHF band

    Camera

    parameter

    OTD

    LIS

    (TRMM)

    GLM

    (GOES-R,2016-11)

    LI

    (MTG,2022-12)

    FY-4A lightening mapping imager(FY-4,2016-12)FY-4-03 lightening mapping imager(FY-4,expect 2025)
    Orbit /km71035042164358003580035800
    Ground sampling distance

    10 km@

    nadir

    3.9-

    5.4 km

    8 km@nadir

    14 km@edge field of view(FOV)

    4.5 km@nadir

    10 km@latitude 45°

    7.8 km@nadir4 km@nadir
    FOV /(°)80×8080×8016×167.2×7.2×4.05.0×7.516.0×12.5
    Coverage /km1300×1300580×580visible Earth diskvisible Earth disk3200×4800visible Earth disk
    Detection spectral band /nm777. 4777.4777.4777.4777.4777.4
    Bandwidth /nm1.01.01.01.91.02.0
    Frame time /ms222122
    Probablity of detection≥25%≥90%

    ≥90%(night)

    ≥70%(day)

    90% for latitude 45°

    70% as average over FOV

    40% over EUMETSAT member states(goal)

    70%-

    90%

    ≥70%(day),

    ≥90%(night)

    False alarm rate /%≤10≤5≤10≤10≤10
    Positioning accuracyOne pixelOne pixelOne pixelOne pixelOne pixel
    Table 3. Comparison of the performance of FY-4A lightning mapping imager
    Shulong Bao, Huan Li, Fan Sun, Feng Lu, Zhiqing Zhang, Xiaojie Chen, Shaofan Tang, Hua Liang, Yanhua Zhao. Review of Real-Time Space-Based Optical Detection Technology for Global Total Lightning[J]. Acta Optica Sinica, 2024, 44(2): 0200006
    Download Citation