• Laser & Optoelectronics Progress
  • Vol. 52, Issue 10, 103005 (2015)
Zhang Zhuo1、*, Liang Xiaohui1, He Chunze1, Zhang Chen1, Xiao Rui2, and Cheng Huan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop52.103005 Cite this Article Set citation alerts
    Zhang Zhuo, Liang Xiaohui, He Chunze, Zhang Chen, Xiao Rui, Cheng Huan. Research of Surface-Enhanced Raman Scattering of Trinitrophenol Based on Different Metal Nanoparticles[J]. Laser & Optoelectronics Progress, 2015, 52(10): 103005 Copy Citation Text show less
    References

    [1] Lao Yunliang. Primary Explosive[M]. Beijing: Beijing Institute of Technology Press, 1997.

    [2] Makoto M, Takehiro M, Masatke Y. Synthesis and properties of lead picrates[J]. Science and Technology of Energetic Materials, 2004, 65(1): 7-13.

    [3] Lü Chunhua, Zhang Tonglai, Wei Zhaorong, et al.. A study of preparation and molecular structure of Mn2(CHZ)4(H2O)2](PA)4·10H2O[J]. Chinese Journal of Inorganic Chemistry, 1999, 15(3): 377-382.

    [4] Jin C M, Ye C F, Piekarski C, et al.. Mono and bridged azoliumpicrates as energetic salts[J]. European Journal of Inorganic Chemistry, 2005,18: 3760-3767.

    [5] Muthamizhchelvan C, Saminathan K, Fraanje J, et al.. Crystal structure of 2-chloroanilinium picrate[J]. Analytical Sciences, 2005, 21: x61-x62.

    [6] Yinon J, Zitrin S. Modern methods and applications in analysis of explosives[J]. New York: John Wiley & Sons, 1993.

    [7] Vourvolouos G. Techniques for detecting explosives and contraband[J]. Chemistry and Industry, 1994, 6: 297-300.

    [8] Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20.

    [9] Zhang Z, Xiao R, Yang T, et al.. Liquid core capillary-based Raman probe for surface-enhanced Raman scattering detection[J]. Laser Physics Letters, 2014, 11(3): 035603.

    [10] Fan Tuo, Zhang Jie, Zhang Xiaolei, et al.. Surface-enhanced Raman scattering experimental research on composite structure of gold nanoparticles and carbon nanotubes with different sizes[J]. Chinese J Lasers, 2013, 40(s1): s106001.

    [11] Bai Shi, Zhou Weiping, Ma Ying, et al.. Ag periodic nanostructures and morphology controlled by ultraviolet-visual photoreduction for surface-enhanced Raman scattering[J]. Chinese J Lasers, 2015, 42(3): 0303013.

    [12] Lin Juqiang, Ruan Qiuyong, Chen Guannan, et al.. Research progress of surface enhanced Raman spectroscopy for cancer detection[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080020.

    [13] Weng Shizhuang, Zheng Shouguo, Li Pan, et al.. Quantitative analysis of fenitrothion based on surface-enhanced Raman spectroscopy[J]. Chinese J Lasers, 2013, 40(8): 0815001.

    [14] Yang Pan, Ding Shuaijun, Chen Fansheng, et al.. Application of surface-enhanced Raman spectrum technology in detecting environment pollutants[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030003.

    [15] Doron A, Kalz E, Willner I. Organization of Au colloids as monolayer films onto ITO glass surfaces: Application of the metal colloid films as base interfaces to construct redox-active monolayers[J]. Langmuir, 1995, 11(4): 1313-1317.

    [16] Lee P C, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982, 86(17): 3391-3395.

    [17] Srinivasan P, Gunasekaran M, Kanagasekaran T, et al.. 2,4,6-trinitrophenol (TNP): An organic material for nonlinear optical (NLO) applications[J]. Journal of Crystal Growth, 2006, 289(2): 639-646.

    [18] G Socrates. Infrared and Raman Characteristic Group Frequencies (3rd Edition)[M]. New York: Wiley, 2001.

    Zhang Zhuo, Liang Xiaohui, He Chunze, Zhang Chen, Xiao Rui, Cheng Huan. Research of Surface-Enhanced Raman Scattering of Trinitrophenol Based on Different Metal Nanoparticles[J]. Laser & Optoelectronics Progress, 2015, 52(10): 103005
    Download Citation