• Acta Optica Sinica
  • Vol. 41, Issue 3, 0314001 (2021)
Hao Li1、3, Wei Huang1、2, Wenxi Pei1、3, Zhiyue Zhou1、2, Yulong Cui1、2, Meng Wang1、2、3, and Zefeng Wang1、2、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha, Hunan 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha, Hunan 410073, China
  • show less
    DOI: 10.3788/AOS202141.0314001 Cite this Article Set citation alerts
    Hao Li, Wei Huang, Wenxi Pei, Zhiyue Zhou, Yulong Cui, Meng Wang, Zefeng Wang. Continuous-Wave 1.7 μm All-Fiber Gas Raman Laser Source[J]. Acta Optica Sinica, 2021, 41(3): 0314001 Copy Citation Text show less
    References

    [1] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 298, 399-402(2002).

    [2] Benabid F, Bouwmans G, Knight J C et al. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen[J]. Physical Review Letters, 93, 123903(2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT05000003000010000010000001&idtype=cvips&gifs=Yes

    [3] Wang Z F, Yu F, Wadsworth W J et al. Single-pass high-gain 1.9 μm optical fiber gas Raman laser[J]. Acta Optica Sinica, 34, 0814004(2014).

    [4] Chen Y B, Gu B, Wang Z F et al. 1.5 μm fiber gas Raman laser source[J]. Acta Optica Sinica, 36, 0506002(2016).

    [5] Gu B, Chen Y B, Wang Z F. Red, green and blue laser emissions from H2-filled hollow-core fiber by stimulated Raman scattering[J]. Acta Optica Sinica, 36, 0806005(2016).

    [6] Chen Y B, Wang Z F, Gu B et al. 1.5 μm fiber ethane gas Raman laser amplifier[J]. Acta Optica Sinica, 37, 0514002(2017).

    [7] Gladyshev A V, Kosolapov A F, Khudyakov M M et al. 2.9, 3.3, and 3.5 μm Raman lasers based on revolver hollow-core silica fiber filled by H2/D2 gas mixture[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-8(2018). http://ieeexplore.ieee.org/document/8304624/

    [8] Cao L, Gao S F, Peng Z G et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber[J]. Optics Express, 26, 5609(2018).

    [9] Li Z X, Huang W, Cui Y L et al. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8 μm[J]. Optics Letters, 43, 4671-4674(2018).

    [10] Astapovich M S, Gladyshev A V, Khudyakov M M et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 31, 78-81(2019).

    [11] Mridha M K, Hosseini P, Novoa D et al. Thresholdless deep and vacuum ultraviolet Raman frequency conversion in H2-filled photonic crystal fiber[J]. Optica, 6, 731-734(2019). http://arxiv.org/abs/1811.05700

    [12] Gao S F, Wang Y Y, Wang P. Research progress on hollow-core anti-resonant fiber and gas Raman laser technology[J]. Chinese Journal of Lasers, 46, 0508014(2019).

    [13] Russell P S J, Hölzer P, Chang W et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics[J]. Nature Photonics, 8, 278-286(2014). http://www.nature.com/articles/nphoton.2013.312

    [14] Li X Q, Gao S F, Wang Y Y et al. Low-loss fusion splice of hollow-core anti-resonant fiber and single mode fiber[J]. Acta Optica Sinica, 38, 1006002(2018).

    [15] Benabid F, Couny F, Knight J C et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[J]. Nature, 434, 488-491(2005). http://europepmc.org/abstract/MED/15791251

    [16] Sun Q, Liu E M, Qin F H et al. All-fiber high-pressure gas cell based on hollow-core photonic crystal fiber[J]. Chinese Journal of Lasers, 35, 1029-1034(2008).

    [17] Chen X D, Sun Q, Li H et al. Compact all-fiber gas Raman light source based on hydrogen-filled hollow-core photonic crystal fiber pumped with single-mode Q-switched fiber laser[J]. Optical Fiber Technology, 19, 486-489(2013). http://www.sciencedirect.com/science/article/pii/S1068520013000771

    [18] Couny F, Benabid F, Light P S. Subwatt threshold CW Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber[J]. Physical Review Letters, 99, 1-2(2008).

    [19] Couny F, Mangan B J, Sokolov A V et al. High power 55 watts CW Raman fiber-gas-laser. [C]∥Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010 Conference on. IEEE(2010).

    [20] Zhang Y, Zhang P, Liu P et al. Fiber light source at 1.7 μm waveband and its applications[J]. Laser & Optoelectronics Progress, 53, 090002(2016).

    [21] Daniel J M, Simakov N, Tokurakawa M et al. Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band[J]. Optics Express, 23, 18269-18276(2015). http://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-14-18269

    [22] Khegai A, Melkumov M, Riumkin K et al. NALM-based bismuth-doped fiber laser at 1.7 μm[J]. Optics Letters, 43, 1127-1130(2018).

    [23] Zhang P, Wu D, Du Q et al. 1.7 μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission[J]. Applied Optics, 56, 9742-9748(2017). http://europepmc.org/abstract/MED/29240120

    [24] Kawagoe H, Ishida S, Aramaki M et al. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomed Opt Express, 5, 932-943(2014).

    [25] Cui Y L, Huang W, Li Z X et al. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering[J]. Optics Express, 27, 30396-30404(2019). http://www.ncbi.nlm.nih.gov/pubmed/31684287

    [26] Huang W, Li Z X, Cui Y L et al. Efficient, watt-level, tunable 1.7 μm fiber Raman laser in H2-filled hollow-core fibers[J]. Optics Letters, 45, 475-478(2020). http://www.researchgate.net/publication/337881425_Efficient_watt-level_tunable_17_mm_fiber_Raman_laser_in_H2-filled_hollow-core_fibers

    [27] Cui Y L, Huang W, Zhou Z Y et al. Single-pass high-efficiency rotational Raman laser source based on deuterium-filled hollow-core photonic crystal fiber[J]. Acta Optica Sinica, 40, 0214001(2020).

    [28] Huang W, Cui Y L, Li Z X et al. Research on 1.7 μm fiber laser source based on stimulated Raman scattering of hydrogen in hollow-core fiber[J]. Acta Optica Sinica, 40, 0514001(2020).

    [29] Aghaie K Z, Digonnet M J, Fan S. Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers[J]. Optics Letters, 35, 1938-1940(2010). http://www.opticsinfobase.org/abstract.cfm?URI=ol-35-12-1938

    [30] Mridha M K, Novoa D, Russell P J. Dominance of backward stimulated Raman scattering in gas-filled hollow-core photonic crystal fibers[J]. Optica, 5, 570-576(2018).

    Hao Li, Wei Huang, Wenxi Pei, Zhiyue Zhou, Yulong Cui, Meng Wang, Zefeng Wang. Continuous-Wave 1.7 μm All-Fiber Gas Raman Laser Source[J]. Acta Optica Sinica, 2021, 41(3): 0314001
    Download Citation