• Laser & Optoelectronics Progress
  • Vol. 54, Issue 12, 120006 (2017)
Ding Manman1, Liu Qiyao2、3, Zhao Yongguang1、3、*, and Shen Deyuan1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop54.120006 Cite this Article Set citation alerts
    Ding Manman, Liu Qiyao, Zhao Yongguang, Shen Deyuan. All-Solid-State Vortex Lasers Based on Intra-Cavity Mode Selection and Its Handedness-Control[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120006 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

    [2] Mair A, Vaziri A, Weihs G. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316.

    [3] Jesacher A, Fürhapter S, Bernet S, et al. Shadow effects in spiral phase contrast microscopy[J]. Physical Review Letters, 2005, 94(23): 233902.

    [4] Wang Hao, Yang Dexing, Gan Xuetao, et al. Analysis of interference of planar vortex beams[J]. Acta Optica Sinica, 2009, 29(2): 517-522.

    [5] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

    [6] O′Neil A T, Padgett M J. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner[J]. Optics Communications, 2000, 185(1): 139-143.

    [7] Kuga T, Torii Y, Shiokawa N, et al. Novel optical trap of atoms with a doughnut beam[J]. Physical Review Letters, 1997, 78(25): 4713-4716.

    [8] Curtis J E, Koss B A, Grier D G. Dynamic holographic optical tweezers[J]. Optics Communications, 2002, 207(1): 169-175.

    [9] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature Physics, 2008, 4(4): 282-286.

    [10] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.

    [11] Nivas J J J, Shutong H, Anoop K K, et al. Laser ablation of silicon induced by a femtosecond optical vortex beam[J]. Optics Letters, 2015, 40(20): 4611-4614.

    [12] Barada D, Juman G, Yoshida I, et al. Constructive spin-orbital angular momentum coupling can twist materials to create spiral structures in optical vortex illumination[J]. Applied Physics Letters, 2016, 108(5): 051108.

    [13] Strohaber J, Zhi M, Sokolov A V, et al. Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation[J]. Optics Letters, 2012, 37(16): 3411-3413.

    [14] Bezuhanov K, Dreischuh A, Paulus G G, et al. Vortices in femtosecond laser fields[J]. Optics Letters, 2004, 29(16): 1942-1944.

    [15] Toyoda K, Miyamoto K, Aoki N, et al. Using optical vortex to control the chirality of twisted metal nanostructures[J]. Nano Letters, 2012, 12(7): 3645-3649.

    [16] Toyoda K, Takahashi F, Takizawa S, et al. Transfer of light helicity to nanostructures[J]. Physical Review Letters, 2013, 110(14): 143603.

    [17] Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223.

    [18] Davis J A, McNamara D E, Cottrell D M, et al. Image processing with the radial Hilbert transform: Theory and experiments[J]. Optics Letters, 2000, 25(2): 99-101.

    [19] Guo C S, Liu X, Renet X Y, et al. Optimal annular computer-generated holograms for the generation of optical vortices[J]. Journal of the Optical Society of America A, 2005, 22(2): 385-390.

    [20] Li Hailian, Yang Dexing, Ren Xiaoyuan, et al. Experimental investigation of optical vortex generated by volume holography[J]. Acta Optica Sinica, 2010, 30(2): 503-507.

    [21] Bekshaev A Y, Sviridova S V, Popov A Y, et al. Generation of optical vortex light beams by volume holograms with embedded phase singularity[J]. Optics Communications, 2012, 285(20): 4005-4014.

    [22] Matsumoto N, Ando T, Inoue T, et al. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators[J]. Journal of the Optical Society of America A, 2008, 25(7): 1642-1651.

    [23] Kumar A, Vaity P, Singh R P. Crafting the core asymmetry to lift the degeneracy of optical vortices[J]. Optics Express, 2011,19(7): 6182-6190.

    [24] Wang Zheng, Xin Jingtao, Wu Zhiqiang. Accurate measurement of photon orbital angular momentum carried by helical beams through spatial light modulator[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080902.

    [25] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phase plate[J]. Optics Communications, 1994, 112(5/6): 321-327.

    [26] Turnbull G A, Robertson D A, Smithet G M, et al. The generation of free-space Laguerre-Gaussian modes at millimeter-wave frequencies by use of a spiral phase plate[J]. Optics Communications, 1996, 127(4/5/6): 183-188.

    [27] Xin J T, Dai K J, Zhong L, et al. Generation of optical vortices by using spiral phase plates made of polarization dependent devices[J]. Optics Letters, 2014, 39(7): 1984-1987.

    [28] Xiong Mengsu, Ding Panfeng, Pu Jixiong. Analysis on the beam characteristic of Gaussian beam passing multi-level spiral phase plate[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081902.

    [29] Guo Miaojun, Zeng Jun, Li Jinhong. Generation and interference of vortex beam based on spiral phase plate[J]. Laser & Optoelectronics Progress, 2016, 53(9): 092602.

    [30] Ji W, Lee C H, Chen P, et al. Meta-q-plate for complex beam shaping[J]. Scientific Reports, 2016, 6: 25528.

    [31] Beijersbergen M W, Allen L, van der Veen H, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1/2/3): 123-132.

    [32] Malyutin A A, Ilyukhin V A. Generation of high-order Hermite-Gaussian modes in a flashlamp-pumped neodymium phosphate glass laser and their conversion to Laguerre-Gaussian modes[J]. Quantum Electronics, 2007, 37(2): 181-186.

    [33] Vaity P, Aadhi A, Singh R P. Formation of optical vortices through superposition of two Gaussian beams[J]. Applied Optics, 2013, 52(27): 6652-6656.

    [34] Scheuer J, Orenstein M. Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities[J]. Science, 1999, 285(5425): 230-233.

    [35] Ishaaya A A, Davidson N, Friesem A A. Very high-order pure Laguerre-Gaussian mode selection in a passive Q-switched Nd∶YAG laser[J]. Optics Express, 2005, 13(13): 4952-4962.

    [36] Smith A V, Armstrong D J. Generation of vortex beams by an image-rotating optical parametric oscillator[J]. Optics Express, 2003, 11(8): 868-873.

    [37] Okida M, Omatsu T, Itoh M, et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd∶YVO4 1.3 μm bounce laser[J]. Optics Express, 2007, 15(12): 7616-7622.

    [38] Chard S P, Shardlow P C, Damzen M J. High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design[J]. Applied Physics B: Lasers and Optics, 2009, 97(2): 275-280.

    [39] Chen Y F, Lan Y P, Wang S C. Generation of Laguerre-Gaussian modes in fiber-coupled laser diode end-pumped lasers[J]. Applied Physics B: Lasers and Optics, 2001, 72(2): 167-170.

    [40] Kim J W, Mackenzie J I, Hayes J R, et al. High power Er∶YAG laser with radially polarized Laguerre-Gaussian (LG01) mode output[J]. Optics Express, 2011, 19(15): 14526-14531.

    [41] Kim D J, Kim J W, Clarkson W A, Q-switched Nd∶YAG optical vortex lasers[J]. Optics Express, 2013, 21(24): 29449-29454.

    [42] Fang Z, Xia K, Yao Y, et al. Radially polarized and passively Q-switched Nd∶YAG laser under annular-shaped pumping[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 1600406.

    [43] Fang Z, Xia K, Yao Y, et al. Radially polarized LG01-mode Nd∶YAG laser with annular pumping[J]. Applied Physics B, 2014, 117(1): 219-224.

    [44] Li J, Yao Y, Yu J, et al. Efficient vortex laser with annular pumping formed by circle Dammann grating[J]. IEEE Photonics Technology Letters, 2016, 28(4): 473-476.

    [45] Zhao Y, Wang Z, Yu H, et al. Direct generation of optical vortex pulses[J]. Applied Physics Letters, 2012, 101(3): 031113.

    [46] Ding Y, Xu M, Zhao Y, et al. Thermally driven continuous-wave and pulsed optical vortex[J]. Optics Letters, 2014, 39(8): 2366-2369.

    [47] Zhao Y, Liu Q, Shen D, et al. ~1 mJ pulsed vortex laser at 1645 nm with well-defined helicity[J]. Optics Express, 2016, 24(14): 15596-15602.

    [48] Liu Q, Zhao Y, Shen D, et al. Vortex operation in Er∶LuYAG crystal laser at ~1.6 μm[J/OL]. Optical Materials, 2016[2017-04-05]. http://dx.doi.org/10.1016/j.optmat.2016.06.034.

    [49] Liu Q, Zhao Y, Shen D, et al. Integration of helicity-control and pulse modulation for vortex laser based on a black phosphorus plate[J]. Optics Express, 2016, 24(26): 30031-30037.

    [50] Liu Q, Zhao Y, Shen D, et al. Control of vortex helicity with a quarter-wave plate in an Er∶YAG ceramic solid state laser[J]. IEEE Photonics Journal, 2017, 9(1): 1500408.

    [51] Mcgloin D, Simpson N B, Padgett M J. Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam[J]. Applied Optics, 1998, 37(3): 469-472.

    [52] Tanaka Y, Okida M, Miyamoto K, et al. High power picosecond vortex laser based on a large mode-area fiber amplifier[J]. Optics Express, 2009, 17(16): 14362-14366.

    [53] Koyama M, Hirose T, Okida M, et al. Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier[J]. Optics Express, 2011, 19(2): 994-999.

    [54] Koyama M, Hirose T, Okida M, et al. Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier[J]. Optics Express, 2011, 19(15): 14420-14425.

    [55] Allen L, Padgett M J, Babiker M. The orbital angular momentum of light[J]. Progress in Optics, 1999, 39(1/2/3): 291-372.

    [56] Lin D, Daniel J M O, Clarkson W A. Controlling the handedness of directly excited Laguerre-Gaussian modes in a solid-state laser[J]. Optics Letters, 2014, 39(13): 3903-3906.

    [57] Kim D J, Kim J W. Direct generation of an optical vortex beam in a single-frequency Nd∶YVO4 laser[J]. Optics Letters, 2015, 40(3): 399-402.

    [58] Naidoo D, Ait-Ameur K, Brunel M, et al. Intra-cavity generation of superpositions of Laguerre-Gaussian beams[J]. Applied Physics B: Lasers and Optics, 2012, 106(3): 683-690.

    [59] Litvin I A, Ngcobo S, Naidoo D, et al. Doughnut laser beam as an incoherent superposition of two petal beams[J]. Optics Letters, 2014, 39(3): 704-707.

    [60] Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics[J]. Nature Communications, 2014, 5: 4458.

    [61] Tran V, Soklaski R, Liang Y, et al. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus[J]. Physical Review B, 2014, 89(23): 235319.

    [62] Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: An emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.

    [63] Lin D, Clarkson W A. Polarization-dependent transverse mode selection in an Yb-doped fiber laser[J]. Optics Letters, 2015, 40(4): 498-501.

    [64] Casperson L W. Laser power calculations: Sources of error[J]. Applied Optics, 1980, 19(3): 422-434.

    [65] Clarkson W A, Felgate N S, Hanna D C. Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers[J]. Optics Letters, 1999, 24(12): 820-822.

    [66] Fang Z, Yao Y, Li J, et al. Simple Nd∶YAG laser generates vector and vortex beam[J]. Chinese Optics Letters, 2015, 13(3): 031405.

    [67] Kaminskii A A, Butaeva T I, Fedorov V A, et al. Absorption, luminescence, and stimulated emission investigations in Lu3Al5O12-Er3+ crystals[J]. Physica Status Solidi(a), 1977, 39(2): 541-548.

    [68] Sun M, Long J, Li X, et al. Widely tunable Tm∶LuYAG laser with a volume Bragg grating[J]. Laser Physics Letters, 2012, 9(8): 553-556.

    [69] Di J Q, Xu X D, Tan W D, et al. A highly efficient diode-pumped passively mode-locked Nd∶Lu1.5Y1.5Al5O12 laser[J]. Laser Physics Letters, 2013, 10(9): 095801.

    Ding Manman, Liu Qiyao, Zhao Yongguang, Shen Deyuan. All-Solid-State Vortex Lasers Based on Intra-Cavity Mode Selection and Its Handedness-Control[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120006
    Download Citation