• Infrared and Laser Engineering
  • Vol. 47, Issue 10, 1003002 (2018)
Cao Yuxuan1、2, Shu Shili1, Sun Fangyuan1、2, Zhao Yufei1、2, Tong Cunzhu1, and Wang Lijun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla201847.1003002 Cite this Article
    Cao Yuxuan, Shu Shili, Sun Fangyuan, Zhao Yufei, Tong Cunzhu, Wang Lijun. Development of beam combining technology in mid-infrared semiconductor lasers(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003002 Copy Citation Text show less
    References

    [1] Scholle K, Fuhrberg P, Koopmann P, et al. 2 μm Laser Sources and Their Possible Applications [M]. New York: InTech Open Access Publisher, 2010.

    [2] Sijan A. Development of military lasers for optical countermeasures in the mid-IR [C]//SPIE, 2009, 7483: 748304.

    [3] Choi H K, Eglash S J. High-power multiple-quantum-well GaInAsSb/AlGaAsSb diode lasers emitting at 2.1 μm with ow threshold current density [J]. Applied Physics Letters, 1992, 61(10): 1154-1157.

    [4] Shu S L, Tong C Z, Wang L J, et al. Progress of optically pumped GaSb based semiconductor disk laser [J]. Opto-Electronic Advances, 2018, 1(2): 170003.

    [5] Kim G, Shterengas L, Martinelli R U, et al. High-power room-temperature continuous wave operation of 2.7 and 2.8 μm In(Al)Ga AsSb/GaSb diode lasers [J]. Applied Physics Letters, 2003, 83(10): 1926-1928.

    [6] Donetsky D, Kipshidze G, Shterengas L, et al. 2.3 μm type-I quantum well GaInAsSb /AlGaAsSb/GaSb laser diodes with quasi-CW output power of 1.4 W[J]. Electronics Letters, 2007, 43(15): 810-811.

    [7] Vizbaras K, Amann M C. Room-temperature 3.73 μm GaSb-based type-I quantum-well lasers with quinternary barriers [J]. Semiconductor Science & Technology, 2012, 27(3): 032001.

    [8] Faist J, Capasso F, Sirtori C, et al. Vertical transition quantum cascade laser with Bragg confined excited state[J]. Applied Physics Letters, 1995, 66(5): 538-540.

    [9] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301-305.

    [10] Bai Y, Bandyopadhyay N, Tsao S, et al. Highly temperature insensitive quantum cascade lasers [J]. Applied Physics Letters, 2010, 97(24): 251104.

    [11] Faist J, Cappasso F, Sivco D L, et al. Short wavelength (λ-3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlI[J]. Applied Physics Letters, 1998, 72(6): 680-682.

    [12] Evans A, Nguyen J, Slivken S, et al. Quantum-cascade lasers operating in continuous-wave mode above 90℃ at lambda similar to 5.25 μm [J]. Applied Physics Letters, 2006, 88(5): 051105.

    [13] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser [J]. Science, 1994, 264(5158): 553-556.

    [14] Bai Y, Slivken S, Kuboya S, et al. Quantum cascade lasers that emit more light than heat [J]. Nature Photonics, 2010, 4(2): 99-102.

    [15] Liu P Q, Hoffman A J, Escarra M D, et al. Highly power-efficient quantum cascade lasers [J]. Nature Photonics, 2010, 4(2): 95-98.

    [16] Bai Y, Bandyopadhyay N, Tsao S, et al. Room temperature quantum cascade lasers with 27% wall plug efficiency[J]. Applied Physics Letters, 2011, 98(18): 181102.

    [17] Bloom G, Larat C, Lallier E, et al. Coherent combining of two quantum-cascade lasers in a Michelson cavity [J]. Optics Letters, 2010, 35(11): 1917-1919.

    [18] Bloom G, Larat C, Lallier E, et al. Passive coherent beam combining of quantum-cascade lasers with a Dammann grating[J]. Optics Letters, 2011, 36(9): 3810-3812.

    [19] Huang R K, Chann B, Burgess J, et al. TeraDiode's high brightness semiconductor lasers [C]//SPIE, 2015, 9730: 97300C.

    [20] Fan T Y, Sanchez A, Daneu V, et al. Spectral beam combining of a broad-stripe diode laser array in an external cavity[J]. Optics Letters, 2000, 25(6): 405-407.

    [21] Vijayakumar D, Jensen O B, Thestrup B, et al. Wavelength beam combining of a 980 nm tapered diode laser bar in an external cavity[C]//SPIE, 2010, 7720: 77201U.

    [22] Huang R K, Missaggia L J, Chann B, et al. High-brightness wavelength beam combined semiconductor laser diode arrays [J]. IEEE Photonics Technology Letters, 2007, 19(4): 209-211.

    [23] Montoya J, Augst S J, Creedon K, et al. External cavity beam combining of 21 semiconductor lasers using SPGD [J]. Applied Optics, 2012, 51(11): 1727-1728.

    [24] Müller A, Vijayakumarole D, Jensen O, et al. Spectral beam combining of diode lasers with high efficiency [C]//Lasers, Sources, and Related Photonic Devices Technical Digest OSA, 2012: AM4A 10.

    [25] Lee B G, Kansky J, Goyal A K, et al. Beam combining of quantum cascade laser arrays[J]. Optics Express, 2009, 17(18): 16216-16224.

    [26] Goyal A K, Spencer M, Shatrovoy O, et al. Dispersion-compensated wavelength beam combining of quantum-cascade-laser arrays [J]. Optics Express, 2011, 19(27): 26725-26732.

    [27] Hugger S, Fuchsa F, Aidama R, et al. Spectral beam combining of quantum cascade lasers in an external cavity [C]//SPIE, 2009, 7325: 73250H.

    [28] Bradshawa J L, Toberbjohn R L, Brunoa D, et al. Wavelength beam combined quantum cascade lasers for IRCM [C]//SPIE , 2009, 7325: 73250K.

    [29] Hugger S, Aidam R, Bronner W, et al. Power scaling of quantum cascade lasers via multiemitter beam combining [J]. Optics Express, 2010, 49(11): 111111.

    [30] Wagner J, Schulz N, Rosener B, et al. Infrared semiconductor lasers for DIRCM applications [C]//SPIE, 2008, 7115: 71150A.

    [31] Eldera I F, Thornea D H, Lamba A R, et al. Mid-IR laser source using hollow waveguide beam combining [C]//SPIE, 2016, 9726: 972601.

    [32] Wu H, Wang L J, Peng H Y, et al. High efficiency beam combination of 4.6 μm quantum cascade lasers [J]. Chinese Optics Letters, 2013, 11(9): 091401.

    [33] Wu H, Shu S L, Ning Y Q, et al. High-efficiency beam combination of continuous-wave quantum cascade lasers[J]. Chinese Journal of Lasers, 2015, 42(7): 0702005. (in Chinese)

    [34] Zhao Y, Zhang J C, Zhou Y H, et al. External-cavity beam combining of 4-channel quantum cascade lasers [J]. Infrared Physics & Technology, 2017, 85: 52-55.

    CLP Journals

    [1] Molin Liu, Jiayi Liu, Yizhe Wang, Xuehao Yu, Xiaodong Fang, Libing You. Improvement of the stability of excimer laser output pulse energy by beam combination[J]. Infrared and Laser Engineering, 2024, 53(1): 20230309

    [2] Duan Chengrui, Zhao Pengfei, Wang Xubao, Lin Xuechun. Fiber coupling technology of high brightness blue laser diode[J]. Opto-Electronic Engineering, 2021, 48(5): 200372

    [3] Tiantian Jia, Hailiang Dong, Zhigang Jia, Aiqin Zhang, Jian Liang, Bingshe Xu. Influence of indium composition of n waveguide layer on photoelectric performance of GaN-based green laser diode[J]. Infrared and Laser Engineering, 2021, 50(10): 20200489

    Cao Yuxuan, Shu Shili, Sun Fangyuan, Zhao Yufei, Tong Cunzhu, Wang Lijun. Development of beam combining technology in mid-infrared semiconductor lasers(invited)[J]. Infrared and Laser Engineering, 2018, 47(10): 1003002
    Download Citation