• Opto-Electronic Advances
  • Vol. 6, Issue 11, 230018 (2023)
Hengtian Zhu1、†, Junxian Luo2、†, Qing Dai3、†, Shugeng Zhu1, Huan Yang1, Kanghu Zhou1, Liuwei Zhan1, Biao Xu3, Ye Chen1, Yanqing Lu1, and Fei Xu1、*
Author Affiliations
  • 1College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
  • 2School of Physics, Nanjing University, Nanjing 210023, China
  • 3Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
  • show less
    DOI: 10.29026/oea.2023.230018 Cite this Article
    Hengtian Zhu, Junxian Luo, Qing Dai, Shugeng Zhu, Huan Yang, Kanghu Zhou, Liuwei Zhan, Biao Xu, Ye Chen, Yanqing Lu, Fei Xu. Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group[J]. Opto-Electronic Advances, 2023, 6(11): 230018 Copy Citation Text show less
    References

    [1] GR Dagenais, DP Leong, S Rangarajan, F Lanas, P Lopez-Jaramillo et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet, 785-794(2020).

    [2] RI Kaur. Electrocardiogram signal analysis - an overview. Int J Comput Appl, 22-25(2013).

    [3] SM Debbal, F Bereksi-Reguig. Computerized heart sounds analysis. Comput Biol Med, 263-280(2008).

    [4] M Elgendi. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rep, 14-25(2012).

    [5] J Allen. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas, R1-R39(2007).

    [6] D Buxi, JM Redouté, MR Yuce. A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time. Physiol Meas, R1-R26(2015).

    [7] Y Chen, CY Wen, GC Tao, M Bi. Continuous and noninvasive measurement of systolic and diastolic blood pressure by one mathematical model with the same model parameters and two separate pulse wave velocities. Ann Biomed Eng, 871-882(2012).

    [8] Y Chen, CY Wen, GC Tao, M Bi, GQ Li. Continuous and noninvasive blood pressure measurement: a novel modeling methodology of the relationship between blood pressure and pulse wave velocity. Ann Biomed Eng, 2222-2233(2009).

    [9] XR Ding, BP Yan, YT Zhang, J Liu, N Zhao et al. Pulse transit time based continuous cuffless blood pressure estimation: a new extension and a comprehensive evaluation. Sci Rep, 11554(2017).

    [10] R Mukkamala, JO Hahn, OT Inan, LK Mestha, CS Kim et al. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng, 1879-1901(2015).

    [11] M Sharma, K Barbosa, V Ho, D Griggs, T Ghirmai et al. Cuff-less and continuous blood pressure monitoring: a methodological review. Technologies, 21(2017).

    [12] JH Koo, HW Yun, WC Lee, SH Sunwoo, HJ Shim et al. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electron Adv, 210131(2022).

    [13] A Bennett, Y Beiderman, S Agdarov, Y Beiderman, R Hendel et al. Monitoring of vital bio-signs by analysis of speckle patterns in a fabric-integrated multimode optical fiber sensor. Opt Express, 20830-20844(2020).

    [14] HU Chung, BH Kim, JY Lee, J Lee, ZQ Xie et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science, eaau0780(2019).

    [15] HU Chung, AY Rwei, A Hourlier-Fargette, S Xu, K Lee et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat Med, 418-429(2020).

    [16] Y Jin, GN Chen, KT Lao, SH Li, Y Lu et al. Identifying human body states by using a flexible integrated sensor. npj Flex Electron, 28(2020).

    [17] HC Li, YJ Ma, ZW Liang, ZH Wang, Y Cao et al. Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor. Natl Sci Rev, 849-862(2020).

    [18] F Zhong, W Hu, PN Zhu, H Wang, C Ma et al. Piezoresistive design for electronic skin: from fundamental to emerging applications. Opto-Electron Adv, 210029(2022).

    [19] JH Li, JH Chen, F Xu. Sensitive and wearable optical microfiber sensor for human health monitoring. Adv Mater Technol, 1800296(2018).

    [20] CH Wang, XS Li, HJ Hu, L Zhang, ZL Huang et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng, 687-695(2018).

    [21] L Zhang, J Pan, Z Zhang, H Wu, N Yao et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv, 190022(2020).

    [22] HT Zhu, LW Zhan, Q Dai, B Xu, Y Chen et al. Self‐assembled wavy optical microfiber for stretchable wearable sensor. Adv Opt Mater, 2002206(2021).

    [23] KO Hill, G Meltz. Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol, 1263-1276(1997).

    [24] Ł Dziuda, FW Skibniewski. A new approach to ballistocardiographic measurements using fibre Bragg grating-based sensors. Biocybern Biomed Eng, 101-116(2014).

    [25] Y Haseda, J Bonefacino, HY Tam, S Chino, S Koyama et al. Measurement of pulse wave signals and blood pressure by a plastic optical fiber FBG sensor. Sensors, 5088(2019).

    [26] L Xu, N Liu, J Ge, XQ Wang, MP Fok. Stretchable fiber-Bragg-grating-based sensor. Opt Lett, 2503-2506(2018).

    [27] EA Al-Fakih, Osman NA Abu, Adikan FR Mahamd, A Eshraghi, P Jahanshahi. Development and validation of fiber Bragg grating sensing pad for interface pressure measurements within prosthetic sockets. IEEE Sensors J, 965-974(2016).

    [28] TL Li, YF Su, FY Chen, XQ Liao, Q Wu et al. A skin‐like and highly stretchable optical fiber sensor with the hybrid coding of wavelength–light intensity. Adv Intell Syst, 2100193(2022).

    [29] J Pan, Z Zhang, CP Jiang, L Zhang, LM Tong. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale, 17538-17544(2020).

    [30] SQ Ma, XY Wang, P Li, N Yao, JL Xiao et al. Optical Micro/Nano fibers enabled smart textiles for human–machine interface. Adv Fiber Mater, 1108-1117(2022).

    [31] G Brambilla, V Finazzi, DJ Richardson. Ultra-low-loss optical fiber nanotapers. Opt Express, 2258-2263(2004).

    [32] JY Lou, YP Wang, LM Tong. Microfiber optical sensors: a review. Sensors, 5823-5844(2014).

    [33] J Thomas, C Voigtländer, RG Becker, D Richter, A Tünnermann et al. Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology. Laser Photonics Rev, 709-723(2012).

    [34] JX Luo, S Liu, PJ Chen, SZ Lu, Q Zhang et al. Fiber optic hydrogen sensor based on a Fabry-Perot interferometer with a fiber Bragg grating and a nanofilm. Lab Chip, 1752-1758(2021).

    [35] G Brambilla, F Xu, P Horak, Y Jung, F Koizumi et al. Optical fiber nanowires and microwires: fabrication and applications. Adv Opt Photonics, 107-161(2009).

    [36] LM Tong, F Zi, X Guo, JY Lou. Optical microfibers and nanofibers: a tutorial. Opt Commun, 4641-4647(2012).

    [37] LY Yang, YP Li, F Fang, LY Li, ZJ Yan et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv, 200076(2022).

    [38] R Mukkamala, D Xu. Continuous and less invasive central hemodynamic monitoring by blood pressure waveform analysis. Am J Physiol Heart Circ Physiol, H584-H599(2010).

    [39] S Laurent, P Boutouyrie, R Asmar, I Gautier, B Laloux et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension, 1236-1241(2001).

    [40] J Kim, TJ Song, D Song, KJ Lee, EH Kim et al. Brachial-ankle pulse wave velocity is a strong predictor for mortality in patients with acute stroke. Hypertension, 240-246(2014).

    [41] GQ Zhang, MW Gao, D Xu, NB Olivier, R Mukkamala. Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure. J Appl Physiol, 1681-1686(2011).

    [42] PA Rueckert, PR Slane, DL Lillis, P Hanson. Hemodynamic patterns and duration of post-dynamic exercise hypotension in hypertensive humans. Med Sci Sports Exerc, 24-32(1996).

    [43] Å Ohlsson, D Steinhaus, B Kjellström, L Ryden, T Bennett. Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors. Eur J Heart Fail, 253-259(2003).

    [44] HD Intengan, EL Schiffrin. Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension, 312-318(2000).

    [45] AJ Taylor, A Bobik, MC Berndt, D Ramsay, G Jennings. Experimental rupture of atherosclerotic lesions increases distal vascular resistance: a limiting factor to the success of infarct angioplasty. Arterioscler Thromb Vasc Biol, 153-160(2002).

    Hengtian Zhu, Junxian Luo, Qing Dai, Shugeng Zhu, Huan Yang, Kanghu Zhou, Liuwei Zhan, Biao Xu, Ye Chen, Yanqing Lu, Fei Xu. Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group[J]. Opto-Electronic Advances, 2023, 6(11): 230018
    Download Citation