• Opto-Electronic Science
  • Vol. 2, Issue 10, 230016 (2023)
Igor S. Balashov1, Alexander A. Chezhegov1, Artem S. Chizhov2, Andrey A. Grunin1, Konstantin V. Anokhin3、4, and Andrey A. Fedyanin1、*
Author Affiliations
  • 1Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
  • 2Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
  • 3Institute for Advanced Brain Studies, Lomonosov Moscow State University, Moscow 119991, Russia
  • 4P. K. Anokhin Research Institute of Normal Physiology, Moscow 125315, Russia
  • show less
    DOI: 10.29026/oes.2023.230016 Cite this Article
    Igor S. Balashov, Alexander A. Chezhegov, Artem S. Chizhov, Andrey A. Grunin, Konstantin V. Anokhin, Andrey A. Fedyanin. Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film[J]. Opto-Electronic Science, 2023, 2(10): 230016 Copy Citation Text show less
    References

    [1] T Ferreira de Lima, BJ Shastri, AN Tait, MA Nahmias, PR Prucnal. Progress in neuromorphic photonics. Nanophotonics, 6, 577-599(2017).

    [2] DX Lai, EL Li, YJ Yan, YQ Liu, JF Zhong et al. Gelatin-hydrogel based organic synaptic transistor. Org Electron, 75, 105409(2019).

    [3] JY Mao, L Zhou, XJ Zhu, Y Zhou, ST Han. Photonic memristor for future computing: a perspective. Adv Opt Mater, 7, 1900766(2019).

    [4] GL Ding, BD Yang, K Zhou, C Zhang, YX Wang et al. Synaptic plasticity and filtering emulated in metal–organic frameworks nanosheets based transistors. Adv Electron Mater, 6, 1900978(2020).

    [5] PA Merolla, JV Arthur, R Alvarez-Icaza, AS Cassidy, J Sawada et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345, 668-673(2014).

    [6] K Yamazaki, VK Vo-Ho, D Bulsara, N Le. Spiking neural networks and their applications: a review. Brain Sci, 12, 863(2022).

    [7] A Taherkhani, A Belatreche, YH Li, G Cosma, LP Maguire et al. A review of learning in biologically plausible spiking neural networks. Neural Netw, 122, 253-272(2020).

    [8] M Davies, N Srinivasa, TH Lin, G Chinya, YQ Cao et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro, 38, 82-99(2018).

    [9] SB Furber, F Galluppi, S Temple, LA Plana. The spinnaker project. Proc IEEE, 102, 652-665(2014).

    [10] L Yin, C Han, QT Zhang, ZY Ni, SY Zhao et al. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy, 63, 103859(2019).

    [11] K Wang, SL Dai, YW Zhao, Y Wang, C Liu et al. Light‐stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small, 15, 1900010(2019).

    [12] Y Wang, ZY Lv, L Zhou, XL Chen, JR Chen et al. Emerging perovskite materials for high density data storage and artificial synapses. J Mater Chem C, 6, 1600-1617(2018).

    [13] GK Gupta, IJ Kim, Y Park, MK Kim, JS Lee. Inorganic perovskite quantum dot-mediated photonic multimodal synapse. ACS Appl Mater Interfaces, 15, 18055-18064(2023).

    [14] SP Ge, FC Huang, JQ He, ZS Xu, ZH Sun et al. Bidirectional photoresponse in perovskite‐ZnO heterostructure for fully optical-controlled artificial synapse. Adv Opt Mater, 10, 2200409(2022).

    [15] JD Gong, HY Yu, X Zhou, HH Wei, MX Ma et al. Lateral artificial synapses on hybrid perovskite platelets with modulated neuroplasticity. Adv Funct Mater, 30, 2005413(2020).

    [16] X Chen, BK Chen, B Jiang, TF Gao, G Shang et al. Nanowires for UV–vis–IR optoelectronic synaptic devices. Adv Funct Mater, 33, 2208807(2023).

    [17] K Zhou, G Shang, H Hsu, SH Han, VAL Roy et al. Emerging 2D metal oxides: from synthesis to device integration. Adv Mater, 35, 2207774(2023).

    [18] XT Hong, XQ Liu, L Liao, XM Zou. Review on metal halide perovskite-based optoelectronic synapses. Photon Res, 11, 787-807(2023).

    [19] S Shrivastava, LB Keong, S Pratik, AS Lin, TY Tseng. Fully photon controlled synaptic memristor for neuro-inspired computing. Adv Electron Mater, 9, 2201093(2023).

    [20] S Subramanian Periyal, M Jagadeeswararao, SE Ng, RA John, N Mathews. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv Mater Technol, 5, 2000514(2020).

    [21] Y Liu, W Huang, XW Wang, RR Liang, J Wang et al. A hybrid phototransistor neuromorphic synapse. IEEE J Electron Dev Soc, 7, 13-17(2018).

    [22] Y Li, GZ Shen. Advances in optoelectronic artificial synapses. Cell Rep Phys Sci, 3, 101037(2022).

    [23] W Huang, PJ Hang, Y Wang, K Wang, SH Han et al. Zero-power optoelectronic synaptic devices. Nano Energy, 73, 104790(2020).

    [24] S Hong, SH Choi, J Park, H Yoo, JY Oh et al. Sensory adaptation and neuromorphic phototransistors based on CsPb (Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano, 14, 9796-9806(2020).

    [25] DD Hao, JY Zhang, SL Dai, JH Zhang, J Huang. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interfaces, 12, 39487-39495(2020).

    [26] M Kumar, J Kim, CP Wong. Transparent and flexible photonic artificial synapse with piezo-phototronic modulator: Versatile memory capability and higher order learning algorithm. Nano Energy, 63, 103843(2019).

    [27] YB Zhai, Y Zhou, XQ Yang, F Wang, WB Ye et al. Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy, 67, 104262(2020).

    [28] J Wang, H Shen, Y Xia, S Komarneni. Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances. Ceramics international, 47, 7353-7368(2021).

    [29] J Benda, J Tabak, D Jaeger, R Jung. Spike-frequency adaptation. Encyclopedia of Computational Neuroscience, 1-12(2014).

    [30] G Indiveri, B Linares-Barranco, TJ Hamilton, A van Schaik, R Etienne-Cummings et al. Neuromorphic silicon neuron circuits. Front Neurosci, 5, 73(2011).

    [31] SA Aamir, P Müller, G Kiene, L Kriener, Y Stradmann et al. A mixed-signal structured adex neuron for accelerated neuromorphic cores. IEEE Trans Biomed Circ Syst, 12, 1027-1037(2018).

    [32] B Hille. Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J, 22, 283-294(1978).

    [33] A Chizhov, M Rumyantseva, A Gaskov. Light activation of nanocrystalline metal oxides for gas sensing: principles, achievements, challenges. Nanomaterials, 11, 892(2021).

    [34] A Gurlo, MA Carpenter, S Mathur, A Kolmakov. Insights into the mechanism of gas sensor operation. Metal Oxide Nanomaterials for Chemical Sensors, 3-34(2012).

    [35] C Luo, T Kuner, R Kuner. Synaptic plasticity in pathological pain. Trends Neurosci, 37, 343-355(2014).

    [36] J Tao, D Sarkar, S Kale, PK Singh, R Kapadia. Engineering complex synaptic behaviors in a single device: emulating consolidation of short-term memory to long-term memory in artificial synapses via dielectric band engineering. Nano Lett, 20, 7793-7801(2020).

    [37] JY Zhang, TL Sun, S Zeng, DD Hao, B Yang et al. Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy, 95, 106987(2022).

    [38] PS Subin, PS Midhun, A Antony, KJ Saji, MK Jayaraj. Optoelectronic synaptic plasticity mimicked in ZnO-based artificial synapse for neuromorphic image sensing application. Mater Today Commun, 33, 104232(2022).

    [39] JY Zhang, SL Dai, YW Zhao, JH Zhang, J Huang. Recent progress in photonic synapses for neuromorphic systems. Adv Intell Syst, 2, 1900136(2020).

    [40] C Tetzlaff, C Kolodziejski, M Timme, M Tsodyks, F Wörgötter. Synaptic scaling enables dynamically distinct short- and long-term memory formation. PLoS Comput Biol, 9, e1003307(2013).

    [41] TW Rosahl, M Geppert, D Spitlane, J Herz, RE Hammer et al. Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell, 75, 661-670(1993).

    [42] J Benda. Neural adaptation. Curr Biol, 31, R110-R116(2021).

    [43] DL Glanzman. Habituation in Aplysia: the Cheshire cat of neurobiology. Neurobiol Learn Mem, 92, 147-154(2009).

    [44] W Gerstner, WM Kistler, R Naud, L Paninski. NeuronalDynamics: FromSingleNeuronstoNetworksandModelsofCognition(2014).

    [45] F Zuo, P Panda, M Kotiuga, JR Li, MG Kang et al. Habituation based synaptic plasticity and organismic learning in a quantum perovskite. Nat Commun, 8, 240(2017).

    [46] A Janotti, CG van de Walle. Native point defects in ZnO. Phys Rev B, 76, 165202(2007).

    [47] A Chizhov, P Kutukov, A Gulin, A Astafiev, M Rumyantseva. Highly active nanocrystalline ZnO and its photo-oxidative properties towards acetone vapor. Micromachines, 14, 912(2023).

    [48] H Markram, M Toledo-Rodriguez, Y Wang, A Gupta, G Silberberg et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci, 5, 793-807(2004).

    [49] R Jolivet, TJ Lewis, W Gerstner. Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol, 92, 959-976(2004).

    [50] EM Izhikevich. Simple model of spiking neurons. IEEE Trans Neural Netw, 14, 1569-1572(2003).

    [51] R Brette, W Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol, 94, 3637-3642(2005).

    [52] A Tabas, G Mihai, S Kiebel, R Trampel, K von Kriegstein. Abstract rules drive adaptation in the subcortical sensory pathway. eLife, 9, e64501(2020).

    [53] M Maravall, A Alenda, MR Bale, RS Petersen. Transformation of adaptation and gain rescaling along the whisker sensory pathway. PLoS One, 8, e82418(2013).

    [54] NT Dhruv, M Carandini. Cascaded effects of spatial adaptation in the early visual system. Neuron, 81, 529-535(2014).

    [55] AS Chizhov, MM Rumyantseva, KA Drozdov, IV Krylov, M Batuk et al. Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals. Sens Actuat B Chem, 329, 129035(2021).

    [56] S Brunauer, PH Emmett, E Teller. Adsorption of gases in multimolecular layers. J Am Chem Soc, 60, 309-319(1938).

    Igor S. Balashov, Alexander A. Chezhegov, Artem S. Chizhov, Andrey A. Grunin, Konstantin V. Anokhin, Andrey A. Fedyanin. Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film[J]. Opto-Electronic Science, 2023, 2(10): 230016
    Download Citation