• Photonics Research
  • Vol. 3, Issue 3, 86 (2015)
Rumao Tao1, Pengfei Ma1, Xiaolin Wang1、*, Pu Zhou1、2, and Zejin Liu1
Author Affiliations
  • 1College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2e-mail: zhoupu203@163.com
  • show less
    DOI: 10.1364/PRJ.3.000086 Cite this Article Set citation alerts
    Rumao Tao, Pengfei Ma, Xiaolin Wang, Pu Zhou, Zejin Liu. 1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 2015, 3(3): 86 Copy Citation Text show less
    References

    [1] C. B. Olausson, A. Shirakawa, M. Chen, J. K. Lyngsø, J. Broeng, K. P. Hansen, A. Bjarklev, K. Ueda. 167  W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178  nm. Opt. Express, 18, 16345-16352(2010).

    [2] J. Wang, J. Hu, L. Zhang, X. Gu, J. Chen, Y. Feng. A 100  W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120  nm. Opt. Express, 20, 28373-28378(2012).

    [3] S. Mo, S. Xu, X. Huang, W. Zhang, Z. Feng, D. Chen, T. Yang, Z. Yang. A 1014  nm linearly polarized low noise narrow linewidth single-frequency fiber laser. Opt. Express, 21, 12419-12423(2013).

    [4] J. Liu, H. Shi, K. Liu, Y. Hou, P. Wang. 210  W single-frequency, single-polarization, thulium-doped all-fiber MOPA. Opt. Express, 22, 13572-13578(2014).

    [5] B. Samson, A. Carter. Recent progress on power scaling narrow linewidth fiber amplifiers and their applications. Rev. Laser Eng., 41, 714-717(2010).

    [6] A. Carter, J. Edgecumbe, D. P. Machewirth, J. Galipeau, B. Samson, K. Tankala, M. O’Connor. Recent progress in the development of kW-level monolithic PM-LMA fiber amplifiers. Proc. SPIE, 6344, 6344F(2006).

    [7] S. Belke, F. Becker, B. Neumann, S. Ruppik, U. Hefter. Completely monolithic linearly polarized high-power fiber laser oscillator. Proc. SPIE, 8961, 896124(2014).

    [8] B. Samson, A. Carter, K. Tankala. Rare-earth fibres power up. Nat. Photonics, 5, 466-467(2011).

    [9] K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, E. Honea. Threshold power and fiber degradation induced modal instabilities in high power fiber amplifiers based on large mode area fibers. Proc. SPIE, 8961, 89611R(2014).

    [10] C. Wirth, T. Schreiber, M. Rekas, I. Tsybin, T. Peschel, R. Eberhardt, A. Tünnermann. High-power linear-polarized narrow linewidth photonic crystal fiber amplifier. Proc. SPIE, 7580, 75801H(2010).

    [11] C. Robin, I. Dajani, C. Zeringue, B. Ward, A. Lanari. Gain-tailored SBS suppressing photonic crystal fibers for high power applications. Proc. SPIE, 8237, 82371D(2012).

    [12] M. Karow, H. Tunnermann, J. Neumann, D. Kracht, P. Wessels. Beam quality degradation of a single frequency Yb-doped photonic crystal fiber amplifier with low mode instability threshold power. Opt. Lett., 37, 4242-4244(2012).

    [13] B. Ward, C. Robin, I. Dajani. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt. Express, 20, 11407-11422(2012).

    [14] N. Haarlammert, O. de Vries, A. Liem, A. Kliner, T. Peschel, T. Schreiber, R. Eberhardt, A. Tünnermann. Build up and decay of mode instability in a high power fiber amplifier. Opt. Express, 20, 13274-13283(2012).

    [15] R. Tao, P. Ma, X. Wang, P. Zhou, Z. Liu. Experimental study on mode instabilities in all-fiberized high-power fiber amplifiers. Chin. Opt. Lett., 12, 020603(2014).

    [16] A. Smith, J. Smith. Mode instability in high power fiber amplifiers. Opt. Express, 19, 10180-10192(2011).

    [17] K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard. Theoretical analysis of mode instability in high power fiber amplifiers. Opt. Express, 21, 1944-1971(2013).

    [18] L. Dong. Stimulated thermal Rayleigh scattering in optical fibers. Opt. Express, 21, 2642-2656(2013).

    [19] A. V. Smith, J. J. Smith. Steady-periodic method for modeling mode instability in fiber amplifiers. Opt. Express, 21, 2606-2623(2013).

    [20] K. R. Hansen, T. T. Alkeskjold, J. Lægsgaard. Impact of gain saturation on the mode instability threshold in high-power fiber amplifiers. Opt. Express, 22, 11267-11278(2014).

    [21] W.-W. Ke, X.-J. Wang, X.-F. Bao, X.-J. Shu. Thermally induced mode distortion and its limit to power scaling of fiber lasers. Opt. Express, 21, 14272-14281(2013).

    [22] C. Jauregui, H. Otto, F. Stutzki, F. Jansen, J. Limpert, A. Tünnermann. Passive mitigation strategies for mode instabilities in high-power fiber laser systems. Opt. Express, 21, 19375-19386(2013).

    [23] A. V. Smith, J. J. Smith. Maximizing the mode instability threshold of a fiber amplifier(2013).

    [24] H.-J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, A. Tünnermann. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector. Opt. Express, 21, 17285-17298(2013).

    [25] H.-J. Otto, F. Stutzki, F. Jansen, T. Eidam, C. Jauregui, J. Limpert, A. Tünnermann. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers. Opt. Express, 20, 15710-15722(2012).

    [26] R. Tao, P. Ma, X. Wang, P. Zhou, Z. Liu. Study of mode instabilities in high power fiber amplifiers by detecting scattering light, FTh2F.2(2014).

    [27] M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, J. Lægsgaard. Distributed mode filtering rod fiber amplifier delivering 292  W with improved mode stability. Opt. Express, 20, 5742-5753(2012).

    [28] C. Jauregui, H.-J. Otto, N. Modsching, O. de Vries, J. Limpert, A. Tünnermann. The impact of photodarkening on mode instabilities in high power fiber laser systems, ATh2A.1(2014).

    [29] B. Samson, G. Frith, A. Carter, K. Tankala. High-power large-mode area optical fibers for fiber lasers and amplifiers. OFC/NFOEC(2008).

    [30] M. N. Ozisik. Heat Conduction(1993).

    [31] I.-N. Hu, C. Zhu, C. Zhang, A. Thomas, A. Galvanauskas. Analytical time-dependent theory of thermally-induced modal instabilities in high power fiber amplifiers. Proc. SPIE, 8601, 860109(2013).

    [32] M. M. Jørgensen, K. R. Hansen, M. Laurila, T. T. Alkeskjold, J. Lægsgaard. Modal instability of rod fiber amplifiers: a semi-analytic approach. Proc. SPIE, 8601, 860123(2013).

    [33] M. M. Jørgensen, K. R. Hansen, M. Laurila, T. T. Alkeskjold, J. Lægsgaard. Fiber amplifiers under thermal loads leading to transverse mode instability. Proc. SPIE, 8961, 89612P(2014).

    [34] C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, N. Peyghambarian. Low-noise narrow-linewidth fiber laser at 1550  nm. J. Lightwave Technol., 22, 57-62(2004).

    [35] A. V. Smith, J. J. Smith. Increasing mode instability thresholds of fiber amplifiers by gain saturation. Opt. Express, 21, 15168-15182(2013).

    [36] J. P. Koplow, D. A. V. Kliner, L. Goldberg. Single mode operation of a coiled multi-mode fiber amplifier. Opt. Lett., 25, 442-444(2000).

    [37] K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. Rezaei Nasirabad, N. Tabatabaei Jafari, A. Hamedani Golshan, A. Babazadeh, M. Lafouti. Controlling mode instability in a 500  W ytterbium-doped fiber laser. Laser Phys., 24, 025102(2014).

    [38] D. Marcuse. Curvature loss formula for optical fibers. J. Opt. Soc. Am., 66, 216-220(1976).

    [39] R. Schermer, J. Cole. Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE J. Quantum Electron., 43, 899-909(2007).

    [40] M. L. Stock, C.-H. Liu, A. Kuznetsov, G. Tudury, A. Galvanauskas, T. Sosnowski. Polarized, 100  kW peak power, high brightness nanosecond lasers based on 3C optical fiber. Proc. SPIE, 7914, 79140U(2011).

    [41] T.-W. Wu, L. Dong, H. Winful. Bend performance of leakage channel fibers. Opt. Express, 16, 4278-4285(2008).

    [42] L. Dong, K. Saitoh, F. Kong, P. Foy, T. Hawkins, D. Mcclane, G. Gu. All-solid photonic bandgap fibers for high power lasers (Invited Paper). Proc. SPIE, 8547, 85470J(2012).

    CLP Journals

    [1] Man Jiang, Pengfei Ma, Long Huang, Jiangming Xu, Pu Zhou, Xijia Gu. kW-level, narrow-linewidth linearly polarized fiber laser with excellent beam quality through compact one-stage amplification scheme[J]. High Power Laser Science and Engineering, 2017, 5(4): 04000e30

    [2] Boheng Lai, Lizhi Dong, Shanqiu Chen, Guomao Tang, Wenjin Liu, Shuai Wang, Xing He, Kangjian Yang, Ping Yang, Bing Xu, Chao Wang, Xianda Liu, Qingsheng Pang, Yang Liu. Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system[J]. Chinese Optics Letters, 2016, 14(9): 091402

    [3] Zebiao Li, Zhihua Huang, Xiaoyu Xiang, Xiaobao Liang, Honghuan Lin, Shanhui Xu, Zhongmin Yang, Jianjun Wang, Feng Jing. Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2  kW all-fiberized laser[J]. Photonics Research, 2017, 5(2): 77

    [4] Jianjun Wang, Yu Liu, Min Li, Xi Feng, Qiuhui Chu, Chun Zhang, Cong Gao, Rumao Tao, Honghuan Lin, Feng Jing. Ten-year review and prospect on mode instability research of fiber lasers[J]. High Power Laser and Particle Beams, 2020, 32(12): 121003

    [5] Chen Shi, Hanwei Zhang, Xiaolin Wang, Pu Zhou, Xiaojun Xu. kW-class high power fiber laser enabled by active long tapered fiber[J]. High Power Laser Science and Engineering, 2018, 6(2): 02000e16

    [6] Qiuhui Chu, Qiang Shu, Zeng Chen, Fengyun Li, Donglin Yan, Chao Guo, Honghuan Lin, Jianjun Wang, Feng Jing, Chuanxiang Tang, Rumao Tao. Experimental study of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers[J]. Photonics Research, 2020, 8(4): 595

    [7] Wei Gao, Wenhui Fan, Pei Ju, Gang Li, Yanpeng Zhang, Aifeng He, Qi Gao, Zhe Li. Effective suppression of mode distortion induced by stimulated Raman scattering in high-power fiber amplifiers[J]. High Power Laser Science and Engineering, 2021, 9(2): 02000e20

    [8] Hanwei Zhang, Pu Zhou, Hu Xiao, Jinyong Leng, Rumao Tao, Xiaolin Wang, Jiangming Xu, Xiaojun Xu, Zejin Liu. Toward high-power nonlinear fiber amplifier[J]. High Power Laser Science and Engineering, 2018, 6(3): 03000e51

    Rumao Tao, Pengfei Ma, Xiaolin Wang, Pu Zhou, Zejin Liu. 1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 2015, 3(3): 86
    Download Citation