• Optical Instruments
  • Vol. 46, Issue 4, 1 (2024)
Xiaorui LIU1, Ping QIU1, Qian LIU1, Jiajie CHEN1..., Xueliang WANG1, Xiaoqi DAI1, Songfeng HUANG1 and Yonghong SHAO1,2,*|Show fewer author(s)
Author Affiliations
  • 1College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Shandong Shenda Optical Technology Co., Ltd., Yantai 264000, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.202311170126 Cite this Article
    Xiaorui LIU, Ping QIU, Qian LIU, Jiajie CHEN, Xueliang WANG, Xiaoqi DAI, Songfeng HUANG, Yonghong SHAO. Research progress on SPR-based heavy metal ion detection technology[J]. Optical Instruments, 2024, 46(4): 1 Copy Citation Text show less
    References

    [1] CHENG H Y, ZHANG W W, WANG Y C et al. Interfacing nanoliter liquid chromatography and inductively coupled plasma mass spectrometry with an in-column high-pressure nebulizer for mercury speciation[J]. Journal of Chromatography A, 1575, 59-65(2018).

    [2] HASAN A, NANAKALI N M Q, SALIHI A et al. Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods[J]. Talanta, 215, 120939(2020).

    [3] CAYLAK O, ELCI S G, HÖL A et al. Use of an aminated Amberlite XAD-4 column coupled to flow injection cold vapour generation atomic absorption spectrometry for mercury speciation in water and fish tissue samples[J]. Food Chemistry, 274, 487-493(2019).

    [4] KAUŠAITĖ A, RAMANAVIČIENĖ A, MOSTOVOJUS V et al. Surface plasmon resonance and its application to biomedical research[J]. Medicina, 43, 355(2007).

    [5] STAHELIN R V. Surface plasmon resonance: a useful technique for cell biologists to characterize biomolecular interactions[J]. Molecular Biology of the Cell, 24, 883-886(2013).

    [6] POLLET J, DELPORT F, JANSSEN K P F et al. Fiber optic SPR biosensing of DNA hybridization and DNA-protein interactions[J]. Biosensors and Bioelectronics, 25, 864-869(2009).

    [7] LIN W B, JAFFREZIC-RENAULT N, GAGNAIRE A et al. The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor[J]. Sensors and Actuators A:Physical, 84, 198-204(2000).

    [8] CHEN W J, KAN T, AJIKI Y et al. NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR[J]. Optics Express, 24, 25797-25804(2016).

    [9] CAUCHETEUR C, SHEVCHENKO Y, SHAO L Y et al. High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement[J]. Optics Express, 19, 1656-1664(2011).

    [11] FU H Y, ZHANG S W, CHEN H et al. Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor[J]. IEEE Sensors Journal, 15, 5478-5482(2015).

    [12] SINGH M, HOLZINGER M, TABRIZIAN M et al. Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors[J]. Journal of the American Chemical Society, 137, 2800-2803(2015).

    [13] MUKHTAR W M, HALIM R M, DASUKI K A, et al. Silvergraphene oxide nanocomposite filmbased SPR sens f detection of Pb2+ ions[C]Proceedings of the 2018 IEEE International Conference on Semiconduct Electronics (ICSE). Kuala Lumpur: IEEE, 2018.

    [14] ALWAHIB A A A, MUSTAPHA KAMIL Y, ABU BAKAR M H et al. Reduced graphene oxide/maghemite nanocomposite for detection of lead ions in water using surface plasmon resonance[J]. IEEE Photonics Journal, 10, 4801310(2018).

    [15] DANIYAL W M E M M, FEN Y W, ABDULLAH J et al. Exploration of surface plasmon resonance for sensing copper ion based on nanocrystalline cellulose-modified thin film[J]. Optics Express, 26, 34880-34893(2018).

    [16] ROSHIDI M D A, FEN Y W, OMAR N A S et al. Optical studies of graphene oxide/poly(amidoamine) dendrimer composite thin film and its potential for sensing Hg2+ using surface plasmon resonance spectroscopy[J]. Sensors and Materials, 31, 1147-1156(2019).

    [17] KAMARUDDIN N H, BAKAR A A A, YAACOB M H et al. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection[J]. Applied Surface Science, 361, 177-184(2016).

    [18] KAMARUDDIN N H, BAKAR A A A, MOBARAK N N et al. Binding affinity of a highly sensitive Au/Ag/Au/Chitosan-graphene oxide sensor based on direct detection of Pb2+ and Hg2+ ions[J]. Sensors (Switzerland), 17, 2277(2017).

    [19] FAUZI N I M, FEN Y W, OMAR N A S et al. Nanostructured chitosan/maghemite composites thin film for potential optical detection of mercury ion by surface plasmon resonance investigation[J]. Polymers, 12, 1497(2020).

    [20] WANG W H, ZHOU X L, WU S X et al. Reusable surface plasmon resonance sensor for rapid detection of Cu2+ based on modified-chitosan thin film as an active layer[J]. Sensors and Actuators A:Physical, 286, 59-67(2019).

    [21] ANAS N A A, FEN Y W, OMAR N A S et al. Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion[J]. Optics & Laser Technology, 120, 105724(2019).

    [22] SHARMA A K, PANDEY A K. Blue phosphorene/MoS2 heterostructure based SPR sensor with enhanced sensitivity[J]. IEEE Photonics Technology Letters, 30, 595-598(2018).

    [23] XUE T Y, QI K, HU C Q. Novel SPR sensing platform based on superstructure MoS2 nanosheets for ultrasensitive detection of mercury ion[J]. Sensors and Actuators B:Chemical, 284, 589-594(2019).

    [24] RAJ D R, PRASANTH S, VINEESHKUMAR T V et al. Surface plasmon resonance based fiber optic sensor for mercury detection using gold nanoparticles PVA hybrid[J]. Optics Communications, 367, 102-107(2016).

    [25] SHRIVASTAV A M, GUPTA B D. Ion-imprinted nanoparticles for the concurrent estimation of Pb(II) and Cu(II) ions over a two channel surface plasmon resonance-based fiber optic platform[J]. Journal of Biomedical Optics, 23, 017001(2018).

    [26] YUAN H Z, JI W, CHU S W et al. Mercaptopyridine-functionalized gold nanoparticles for fiber-optic surface plasmon resonance Hg2+ sensing[J]. ACS Sensors, 4, 704-710(2019).

    [27] CHEN Z L, HAN K L, ZHANG Y N. Reflective fiber surface plasmon resonance sensor for high-sensitive mercury ion detection[J]. Applied Sciences, 9, 1480(2019).

    [28] DING Z W, RAVIKUMAR R, ZHAO C L et al. Chitosan/poly (acrylic acid) based fiber-optic surface plasmon resonance sensor for Cu2+ ions detection[J]. Journal of Lightwave Technology, 37, 2246-2252(2019).

    [29] SI Y, LAO J J, ZHANG X J et al. Electrochemical plasmonic fiber-optic sensors for ultra-sensitive heavy metal detection[J]. Journal of Lightwave Technology, 37, 3495-3502(2019).

    [30] ZHANG M Z, ZHU G X, LI T S et al. A dual-channel optical fiber sensor based on surface plasmon resonance for heavy metal ions detection in contaminated water[J]. Optics Communications, 462, 124750(2020).

    [31] SUHAILIN F H, ALWAHIB A A, KAMIL Y M et al. Fiber-based surface plasmon resonance sensor for lead ion detection in aqueous solution[J]. Plasmonics, 15, 1369-1376(2020).

    [32] DUAN Y F, WANG F, ZHANG X P et al. TFBG-SPR DNA-biosensor for renewable ultra-trace detection of mercury ions[J]. Journal of Lightwave Technology, 39, 3903-3910(2021).

    [33] PENG J J, LIU G K, YUAN D X et al. A flow-batch manipulated Ag NPs based SPR sensor for colorimetric detection of copper ions (Cu2+) in water samples[J]. Talanta, 167, 310-316(2017).

    [34] DEYMEHKAR E, ALI TAHER M, KARAMI C et al. Synthesis of SPR nanosensor using gold nanoparticles and its application to copper (II) determination[J]. Silicon, 10, 1329-1336(2018).

    [35] QIU G Y, NG S P, LIANG X Y et al. Label-free LSPR detection of trace lead(II) ions in drinking water by synthetic poly(mPD-co-ASA) nanoparticles on gold nanoislands[J]. Analytical Chemistry, 89, 1985-1993(2017).

    [36] DAWARE K, KASTURE M, KALUBARME R et al. Detection of toxic metal ions Pb2+ in water using SiO2@Au core-shell nanostructures: A simple technique for water quality monitoring[J]. Chemical Physics Letters, 732, 136635(2019).

    [37] CAGLAYAN M O. Plasmon resonance-enhanced internal reflection ellipsometry for the trace detection of mercuric ion[J]. International Journal of Environmental Science and Technology, 15, 909-914(2018).

    [38] ZHANG Z H, LEI K N, LI C N et al. A new and facile nanosilver SPR colored method for ultratrace arsenic based on aptamer regulation of Au-doped carbon dot catalytic amplification[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 232, 118174(2020).

    [39] ROTHENHÄUSLER B, KNOLL W. Surface–plasmon microscopy[J]. Nature, 332, 615-617(1988).

    [40] WANG X L, ZENG Y J, ZHOU J et al. Ultrafast surface plasmon resonance imaging sensor via the high-precision four-parameter-based spectral curve readjusting method[J]. Analytical Chemistry, 93, 828-833(2021).

    [41] KRISHNAMOORTHY G, CARLEN E T, BEUSINK J B et al. Single injection microarray-based biosensor kinetics[J]. Analytical Methods, 1, 162-169(2009).

    [42] WOLF L K, GAO Y, GEORGIADIS R M. Kinetic discrimination of sequence-specific DNA−Drug binding measured by surface plasmon resonance imaging and comparison to solution-phase measurements[J]. Journal of the American Chemical Society, 129, 10503-10511(2007).

    [43] LI S P, YANG M, ZHOU W F et al. Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs[J]. Applied Surface Science, 355, 570-576(2015).

    [44] ZENG Y J, ZHOU J, SANG W et al. High-sensitive surface plasmon resonance imaging biosensor based on dual-wavelength differential method[J]. Frontiers in Chemistry, 9, 801355(2021).

    [45] CHEN K Q, ZENG Y J, WANG L et al. Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions[J]. Journal of Biomedical Optics, 21, 127003(2016).

    [46] ZENG Y J, WANG X L, ZHOU J et al. High-throughput imaging surface plasmon resonance biosensing based on ultrafast two-point spectral-dip tracking scheme[J]. Optics Express, 28, 20624-20633(2020).

    [47] MIYAN R, WANG X L, ZHOU J et al. Phase interrogation surface plasmon resonance hyperspectral imaging sensor for multi-channel high-throughput detection[J]. Optics Express, 29, 31418-31425(2021).

    [48] SANG W, HUANG S F, CHEN J J et al. Wavelength sequential selection technique for high-throughput multi-channel phase interrogation surface plasmon resonance imaging sensing[J]. Talanta, 258, 124405(2023).

    [49] ZENG Y J, ZHOU J, XIAO X P et al. A speckle-free angular interrogation SPR imaging sensor based on galvanometer scan and laser excitation[J]. Plasmonics, 14, 1497-1504(2019).

    [50] ZHAO X H, WONG M M K, CHIU S K et al. Effects of three-layered nanodisk size on cell detection sensitivity of plasmon resonance biosensors[J]. Biosensors and Bioelectronics, 74, 799-807(2015).

    [51] CHEN J J, ZENG Y J, ZHOU J et al. Optothermophoretic flipping method for biomolecule interaction enhancement[J]. Biosensors and Bioelectronics, 204, 114084(2022).

    Xiaorui LIU, Ping QIU, Qian LIU, Jiajie CHEN, Xueliang WANG, Xiaoqi DAI, Songfeng HUANG, Yonghong SHAO. Research progress on SPR-based heavy metal ion detection technology[J]. Optical Instruments, 2024, 46(4): 1
    Download Citation