Dan ZENG, Jian-Ming WEI, Jun-Jie ZHANG, Liang CHANG, Wei HUANG. Progressive spatio-temporal feature fusion network for infrared small-dim target detection[J]. Journal of Infrared and Millimeter Waves, 2024, 43(6): 859

Search by keywords or author
- Journal of Infrared and Millimeter Waves
- Vol. 43, Issue 6, 859 (2024)

Fig. 1. Progressive spatio-temporal feature fusion network structure:(a)overall architecture of PSTFNet;(b)progressive temporal accumalation module;(c)multi-scale spatial feature fusion module

Fig. 2. Progressive temporal accumulation module:(a)architecture of the P2DConv module;(b)architecture of the M3DConv module

Fig. 3. SHU-MIRST dataset simulation flowchart:(a)background shooting;(b)target template production;(c)target 3D modeling;(d)image fusion algorithm for region resampling;(e)target template embedding

Fig. 4. SHU-MIRST dataset statistical information: (a) distribution of target sizes;(b) distribution of mean SCR

Fig. 5. Examples of target motion trajectory in the SHU-MIRST dataset

Fig. 6. ROC curves of PSTFNet under different mSCR: (a) mSCR≤3;(b) mSCR>3;(c) all sequences

Fig. 7. Qualitative comparison results of PSTFNet and 6 benchmark algorithms on the SHU-MIRST Dataset

Fig. 8. Visualization map of PSTFNet and the backbone network ResUNet at different stage of decoder
|
Table 1. Quantitative comparison of different algorithms on the SHU-MIRST dataset
|
Table 2. Quantitative comparison of different algorithms on the IRDST-Real dataset
|
Table 3. Results of the ablation experiment for the PSTFNet component modules
|
Table 4. Results of the PTAM layer ablation experiment
|
Table 5. Results of the PTAM composition ablation experiment
|
Table 6. Results of the MSFM composition ablation experiment

Set citation alerts for the article
Please enter your email address