• Optics and Precision Engineering
  • Vol. 31, Issue 10, 1563 (2023)
Ying LIU*, Wei JIANG, Guandian LI, Lei CHEN, and Shuang ZHAO
Author Affiliations
  • College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun130000, China
  • show less
    DOI: 10.37188/OPE.20233110.1563 Cite this Article
    Ying LIU, Wei JIANG, Guandian LI, Lei CHEN, Shuang ZHAO. Textile defect recognition network based on label embedding[J]. Optics and Precision Engineering, 2023, 31(10): 1563 Copy Citation Text show less
    References

    [1] 1庄集超. 基于深度卷积神经网络的布匹瑕疵点检测算法研究[D]. 秦皇岛: 燕山大学, 2020. doi: 10.1109/ccdc52312.2021.9601431ZHUANGJ C. Research on Detection Algorithm Based on Deep Convolution Neural Network for Fabric Defects[D]. Qinhuangdao: Yanshan University, 2020. (in Chinese). doi: 10.1109/ccdc52312.2021.9601431

    [2] J H CHEN, A K JAIN. A structural approach to identify defects in textured images, 29-32(8).

    [3] F S COHEN, Z FAN, S ATTALI. Automated inspection of textile fabrics using textural models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 803-808(1991).

    [4] 4黄佩璠. 基于深度学习的布匹瑕疵检测识别的研究和应用[D]. 南昌: 南昌大学, 2021.HUANGP F. Research and Application of Fabric Defect Detection and Recognition Based on Deep Learning[D]. Nanchang: Nanchang University, 2021. (in Chinese)

    [5] S H CHIU, S CHOU, J J LIAW et al. Textural defect segmentation using a Fourier-domain maximum likelihood estimation method. Textile Research Journal, 72, 253-258(2002).

    [6] J F JING, X T FAN, P F LI. Automated fabric defect detection based on multiple Gabor filters and KPCA. International Journal of Multimedia and Ubiquitous Engineering, 11, 93-106(2016).

    [7] Z LIANG, B XU, Z CHI et al. Intelligent characterization and evaluation of yarn surface appearance using saliency map analysis, wavelet transform and fuzzy ARTMAP neural network. Expert Systems With Applications, 39, 4201-4212(2012).

    [8] 8陈彦彤, 陈伟楠, 张献中, 等. 基于深度卷积神经网络的蝇类面部识别[J]. 光学 精密工程, 2020, 28(7): 1558-1567. doi: 10.37188/OPE.20202807.1558CHENY T, CHENW N, ZHANGX Z, et al. Fly facial recognition based on deep convolutional neural network[J]. Opt. Precision Eng., 2020, 28(7): 1558-1567. (in Chinese). doi: 10.37188/OPE.20202807.1558

    [9] 9王宸, 张秀峰, 刘超, 等. 改进YOLOv3的轮毂焊缝缺陷检测[J]. 光学 精密工程, 2021, 29(8): 1942-1954. doi: 10.37188/OPE.20212908.1942WANGC, ZHANGX F, LIUC, et al. Detection method of wheel hub weld defects based on the improved YOLOv3[J]. Opt. Precision Eng., 2021, 29(8): 1942-1954. (in Chinese). doi: 10.37188/OPE.20212908.1942

    [10] L Y JI, X Y JIANG, Y B GAO et al. ADR-Net: context extraction network based on M-Net for medical image segmentation. Medical Physics, 47, 4254-4264(2020).

    [11] C Y WANG, L F LI. Multi-scale residual deep network for semantic segmentation of buildings with regularizer of shape representation. Remote Sensing, 12, 2932(2020).

    [12] W J LIU, Y J ZHANG, H S FAN et al. A new multi-channel deep convolutional neural network for semantic segmentation of remote sensing image. IEEE Access, 8, 131814-131825(2020).

    [13] 13陈欣, 万敏杰, 马超, 等. 采用多尺度特征融合SSD的遥感图像小目标检测[J]. 光学 精密工程, 2021, 29(11): 2672-2682. doi: 10.37188/OPE.20212911.2672CHENX, WANM J, MAC, et al. Recognition of small targets in remote sensing image using multi-scale feature fusion-based shot multi-box detector[J]. Opt. Precision Eng., 2021, 29(11): 2672-2682. (in Chinese). doi: 10.37188/OPE.20212911.2672

    [14] 14王阳, 陈薇伊, 马军山. 基于卷积神经网络的乳腺癌良恶性诊断[J]. 软件工程, 2022, 25(1): 6-9.WANGY, CHENW Y, MAJ S. Diagnosis of benign and malignant breast cancer based on convolutional neural network[J]. Software Engineer, 2022, 25(1): 6-9. (in Chinese)

    [15] H UZEN, M TURKOGLU, D HANBAY. Texture defect classification with multiple pooling and filter ensemble based on deep neural network. Expert Systems With Applications, 175, 114838(2021).

    [16] 16余永维, 韩鑫, 杜柳青. 基于Inception-SSD算法的零件识别[J]. 光学 精密工程, 2020, 28(8): 1799-1809.YUY W, HANX, DUL Q. Target part recognition based Inception-SSD algorithm[J]. Opt. Precision Eng., 2020, 28(8): 1799-1809. (in Chinese)

    [17] A KRIZHEVSKY, I SUTSKEVER, G E HINTON. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84-90(2017).

    [18] K M HE, X Y ZHANG, S Q REN et al. Deep Residual Learning for Image Recognition, 770-778(27).

    [19] J HU, L SHEN, G SUN. Squeeze-and-Excitation Networks, 7132-7141(18).

    [20] W B OUYANG, B G XU, J HOU et al. Fabric defect detection using activation layer embedded convolutional neural network. IEEE Access, 7, 70130-70140(2019).

    [21] 21陆贵家. 基于Cascade R-CNN改进的花色布匹瑕疵智能识别方法[J]. 现代信息科技, 2020, 4(23): 20-24.LUG J. Improved intelligent recognition method of pattern and color fabric defects based on cascade R-CNN[J]. Modern Informationn Technology, 2020, 4(23): 20-24. (in Chinese)

    [22] P R PENG, Y WANG, C HAO et al. Automatic fabric defect detection method using PRAN-net. Applied Sciences, 10, 8434(2020).

    [23] Tianchi. Smart Diagnosis of Cloth Flaw Dataset. Tianchi(2020). https://tianchi.aliyun.com/dataset/79336

    [24] L N SMITH. Cyclical Learning Rates for Training Neural Networks, 464-472(2017).

    [25] M TAN, Q LE. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks, 6105-6114(2019).

    [26] G HUANG, Z LIU, L VAN DER MAATEN et al. Densely Connected Convolutional Networks, 2261-2269(21).

    [27] S N XIE, R GIRSHICK, P DOLLÁR et al. Aggregated Residual Transformations for Deep Neural Networks, 5987-5995(21).

    [28] S ZAGORUYKO, N KOMODAKIS. Wide residual networks. arXiv preprint(2016).

    [29] A DOSOVITSKIY, L BEYER, A KOLESNIKOV et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint(2020).

    [30] K SIMONYAN, A ZISSERMAN. Very deep convolutional networks for large-scale image recognition. arXiv preprint(2014).

    [31] H L ZHENG, J L FU, T MEI et al. Learning Multi-Attention Convolutional Neural Network for Fine-Grained Image Recognition, 5219-5227(22).

    [32] J L FU, H L ZHENG, T MEI. Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-Grained Image Recognition, 4476-4484(21).

    [33] T HU, H QI, Q HUANG et al. See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification. arXiv preprint(2019).

    [34] H L ZHENG, J L FU, Z J ZHA et al. Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-Grained Image Recognition, 5007-5016(15).

    [35] Y CHEN, Y L BAI, W ZHANG et al. Destruction and Construction Learning for Fine-Grained Image Recognition, 5152-5161(15).

    [36] J HE, J N CHEN, S LIU et al. TransFG: a transformer architecture for fine-grained recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 852-860(2022).

    CLP Journals

    [1] Xiaodong SUN, Qibing ZHU, Huawei XU, Tongzhen XING, Haibin ZHU. MFL_YOLOv8 algorithm for surface defect detection of microfiber leather[J]. Optics and Precision Engineering, 2025, 33(2): 311

    [2] Xiaodong SUN, Qibing ZHU, Huawei XU, Tongzhen XING, Haibin ZHU. MFL_YOLOv8 algorithm for surface defect detection of microfiber leather[J]. Optics and Precision Engineering, 2025, 33(2): 311

    Ying LIU, Wei JIANG, Guandian LI, Lei CHEN, Shuang ZHAO. Textile defect recognition network based on label embedding[J]. Optics and Precision Engineering, 2023, 31(10): 1563
    Download Citation