• Optics and Precision Engineering
  • Vol. 31, Issue 10, 1563 (2023)
Ying LIU*, Wei JIANG, Guandian LI, Lei CHEN, and Shuang ZHAO
Author Affiliations
  • College of Electronic Information Engineering, Changchun University of Science and Technology, Changchun130000, China
  • show less
    DOI: 10.37188/OPE.20233110.1563 Cite this Article
    Ying LIU, Wei JIANG, Guandian LI, Lei CHEN, Shuang ZHAO. Textile defect recognition network based on label embedding[J]. Optics and Precision Engineering, 2023, 31(10): 1563 Copy Citation Text show less
    Structure of residual unit
    Fig. 1. Structure of residual unit
    Overall of TDRNet architecture when training
    Fig. 2. Overall of TDRNet architecture when training
    Overall of TDRNet Architecture When Testing
    Fig. 3. Overall of TDRNet Architecture When Testing
    Example of textile defect category
    Fig. 4. Example of textile defect category
    Structure of Label Embedded Module
    Fig. 5. Structure of Label Embedded Module
    principle of DP loss
    Fig. 6. principle of DP loss
    the dataset label distribution of Guangdong intelligent manufacturing category dataset
    Fig. 7. the dataset label distribution of Guangdong intelligent manufacturing category dataset
    visualization of searching initial learning rate of TDRNet based on improved Resnet-50
    Fig. 8. visualization of searching initial learning rate of TDRNet based on improved Resnet-50
    visualization of learning rate schedule(γ=0.2) of TDRNet based on improved Resnet-50
    Fig. 9. visualization of learning rate schedule(γ=0.2) of TDRNet based on improved Resnet-50
    loss curve of TDRNet based on improved Resnet-50
    Fig. 10. loss curve of TDRNet based on improved Resnet-50
    accuracy curve of TDRNet based on improved Resnet-50
    Fig. 11. accuracy curve of TDRNet based on improved Resnet-50
    Layer nameOutput sizeStrideDilated rate50-layer101-laer
    Input Layer720×720------
    Conv0360×360213×3,643×3,643×3,128
    Conv1_x180×180213×3,max pool
    1×1,643×3,641×1,256×31×1,643×3,641×1,256×3
    Conv2_x90×90221×1,1283×3,1281×1,512×41×1,1283×3,1281×1,512×4
    Conv3_x45×45221×1,2563×3,2561×1,1 024×61×1,2563×3,2561×1,1 024×23
    Conv4_x23×23221×1,5123×3,5121×1,2 048×31×1,5123×3,5121×1,2 048×3
    Conv512×12221×1,5123×3,5121×1,2 048×11×1,5123×3,5121×1,2 048×1
    --1×1----Global Average Pooling, FC,softmax
    Table 1. Backbone of TDRNet

    瑕疵

    名称

    粗分

    类标

    细分

    类标

    瑕疵

    名称

    粗分

    类标

    细分

    类标

    无疵点00星跳1618
    破洞11跳花1619
    水渍22断氨纶1720
    油渍23稀密档1821
    污渍24浪纹档1822
    三丝35色差档1823
    结头46磨痕1924
    花板跳57轧痕1925
    百脚68修痕1926
    毛粒79烧毛痕1927
    粗经810死皱2028
    松经911云织2029
    断经1012双纬2030
    吊经1113双经2031
    粗维1214跳纱2032
    纬缩1315筘路2033
    浆斑1416

    纬纱

    不良

    2034
    整经结1517
    Table 2. Defect Category of GDIM-CD
    软硬件名称硬件型号/软件版本
    CPUIntel(R) Core(R) i7-10700KF@3.8GHz
    GPUNVIDIA RTX3090
    内存Fury HX432C16FB3K2/32
    操作系统Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-37-generic x86_64)
    CUDA版本11.1.1
    Python版本3.9.6
    Pytorch版本1.9.0
    Table 3. Experimental environment of TDRNet
    BackboneLEM ModelDP LossSeesaw LossTop1 err. (%)
    ResNet-50 (baseline)×××20.52
    ResNet-50××20.59
    ResNet-50×18.10
    ResNet-50××18.97
    ResNet-5017.32
    Improved ResNet-50×××19.94

    Improved ResNet-50

    (TDRNet-50)

    16.80
    ResNet-101×××19.58
    ResNet-10116.61
    Improved ResNet-101×××19.23

    Improved ResNet-101

    (TDRNet-101)

    16.35
    Table 4. Ablation study of TDRNet on rough-grained task
    ModelTop1 err./%Top5 err./%Params./MFLOPs/GFPS
    EfficientNet_B02525.1112.644.034.4033
    DenseNet-1692623.1112.4412.5235.5513
    EfficientNet_B42520.208.1517.5916.7016
    DenseNet-2012619.498.4618.1345.4411
    ResNext-502720.137.3423.0244.7426
    ResNet-501821.277.6023.5543.1336
    TDRNet-5017.455.2032.3458.9129
    EfficientNet_B62518.357.0840.7836.9111
    ResNet-1011820.047.7942.5481.7521
    TDRNet-10117.125.2751.3397.5319
    AlexNet1727.3411.1857.097.37277
    WRN502820.688.9966.88119.4219
    ViT_B_162920.069.7687.22249.129
    ViT_B_322920.3010.0887.8451.4944
    WRN1012819.138.63124.88237.0811
    VGG163023.8510.73134.35158.6821
    VGG193024.0110.54139.66201.6718
    ViT_L_162921.5511.09305.20815.693
    ViT_L_322921.3911.38306.02175.6617
    Table 5. Comparison of the typical classification model experimental results for fine-grained task on GDIM-CD
    ModelTDRNetMA-CNN31RA-CNN32WS-DAN33TASN34DCL35TransFG36
    BackboneResNet-50VGG-19VGG-19ResNet-50ResNet-50ResNet-50ViT_B_16
    Top1 err./%17.4520.1420.3118.1318.7018.5720.43
    Top5 err./%5.208.548.296.186.727.048.97
    Table 6. Comparison of the experimental results with fine-grained classification model for fine-grained task on GDIM-CD
    Ying LIU, Wei JIANG, Guandian LI, Lei CHEN, Shuang ZHAO. Textile defect recognition network based on label embedding[J]. Optics and Precision Engineering, 2023, 31(10): 1563
    Download Citation