Fig. 1. Structure of residual unit
Fig. 2. Overall of TDRNet architecture when training
Fig. 3. Overall of TDRNet Architecture When Testing
Fig. 4. Example of textile defect category
Fig. 5. Structure of Label Embedded Module
Fig. 6. principle of DP loss
Fig. 7. the dataset label distribution of Guangdong intelligent manufacturing category dataset
Fig. 8. visualization of searching initial learning rate of TDRNet based on improved Resnet-50
Fig. 9. visualization of learning rate schedule(γ=0.2) of TDRNet based on improved Resnet-50
Fig. 10. loss curve of TDRNet based on improved Resnet-50
Fig. 11. accuracy curve of TDRNet based on improved Resnet-50
Layer name | Output size | Stride | Dilated rate | 50-layer | 101-laer |
---|
Input Layer | 720×720 | -- | -- | -- | Conv0 | 360×360 | 2 | 1 | ![]() ![]() | Conv1_x | 180×180 | 2 | 1 | ![]() ![]() | ![]() ![]() | ![]() ![]() | Conv2_x | 90×90 | 2 | 2 | ![]() ![]() | ![]() ![]() | Conv3_x | 45×45 | 2 | 2 | ![]() ![]() | ![]() ![]() | Conv4_x | 23×23 | 2 | 2 | ![]() ![]() | ![]() ![]() | Conv5 | 12×12 | 2 | 2 | ![]() ![]() | ![]() ![]() | -- | 1×1 | -- | -- | Global Average Pooling, FC,softmax |
|
Table 1. Backbone of TDRNet
瑕疵 名称 | 粗分 类标 签 | 细分 类标 签 | 瑕疵 名称 | 粗分 类标 签 | 细分 类标 签 |
---|
无疵点 | 0 | 0 | 星跳 | 16 | 18 | 破洞 | 1 | 1 | 跳花 | 16 | 19 | 水渍 | 2 | 2 | 断氨纶 | 17 | 20 | 油渍 | 2 | 3 | 稀密档 | 18 | 21 | 污渍 | 2 | 4 | 浪纹档 | 18 | 22 | 三丝 | 3 | 5 | 色差档 | 18 | 23 | 结头 | 4 | 6 | 磨痕 | 19 | 24 | 花板跳 | 5 | 7 | 轧痕 | 19 | 25 | 百脚 | 6 | 8 | 修痕 | 19 | 26 | 毛粒 | 7 | 9 | 烧毛痕 | 19 | 27 | 粗经 | 8 | 10 | 死皱 | 20 | 28 | 松经 | 9 | 11 | 云织 | 20 | 29 | 断经 | 10 | 12 | 双纬 | 20 | 30 | 吊经 | 11 | 13 | 双经 | 20 | 31 | 粗维 | 12 | 14 | 跳纱 | 20 | 32 | 纬缩 | 13 | 15 | 筘路 | 20 | 33 | 浆斑 | 14 | 16 | 纬纱 不良 | 20 | 34 | 整经结 | 15 | 17 |
|
Table 2. Defect Category of GDIM-CD
软硬件名称 | 硬件型号/软件版本 |
---|
CPU | Intel(R) Core(R) i7-10700KF@3.8GHz | GPU | NVIDIA RTX3090 | 内存 | Fury HX432C16FB3K2/32 | 操作系统 | Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-37-generic x86_64) | CUDA版本 | 11.1.1 | Python版本 | 3.9.6 | Pytorch版本 | 1.9.0 |
|
Table 3. Experimental environment of TDRNet
Backbone | LEM Model | DP Loss | Seesaw Loss | Top1 err. (%) |
---|
ResNet-50 (baseline) | × | × | × | 20.52 | ResNet-50 | √ | × | × | 20.59 | ResNet-50 | √ | √ | × | 18.10 | ResNet-50 | × | × | √ | 18.97 | ResNet-50 | √ | √ | √ | 17.32 | Improved ResNet-50 | × | × | × | 19.94 | Improved ResNet-50 (TDRNet-50) | √ | √ | √ | 16.80 | ResNet-101 | × | × | × | 19.58 | ResNet-101 | √ | √ | √ | 16.61 | Improved ResNet-101 | × | × | × | 19.23 | Improved ResNet-101 (TDRNet-101) | √ | √ | √ | 16.35 |
|
Table 4. Ablation study of TDRNet on rough-grained task
Model | Top1 err./% | Top5 err./% | Params./M | FLOPs/G | FPS |
---|
EfficientNet_B0[25] | 25.11 | 12.64 | 4.03 | 4.40 | 33 | DenseNet-169[26] | 23.11 | 12.44 | 12.52 | 35.55 | 13 | EfficientNet_B4[25] | 20.20 | 8.15 | 17.59 | 16.70 | 16 | DenseNet-201[26] | 19.49 | 8.46 | 18.13 | 45.44 | 11 | ResNext-50[27] | 20.13 | 7.34 | 23.02 | 44.74 | 26 | ResNet-50[18] | 21.27 | 7.60 | 23.55 | 43.13 | 36 | TDRNet-50 | 17.45 | 5.20 | 32.34 | 58.91 | 29 | EfficientNet_B6[25] | 18.35 | 7.08 | 40.78 | 36.91 | 11 | ResNet-101[18] | 20.04 | 7.79 | 42.54 | 81.75 | 21 | TDRNet-101 | 17.12 | 5.27 | 51.33 | 97.53 | 19 | AlexNet[17] | 27.34 | 11.18 | 57.09 | 7.37 | 277 | WRN50[28] | 20.68 | 8.99 | 66.88 | 119.42 | 19 | ViT_B_16[29] | 20.06 | 9.76 | 87.22 | 249.12 | 9 | ViT_B_32[29] | 20.30 | 10.08 | 87.84 | 51.49 | 44 | WRN101[28] | 19.13 | 8.63 | 124.88 | 237.08 | 11 | VGG16[30] | 23.85 | 10.73 | 134.35 | 158.68 | 21 | VGG19[30] | 24.01 | 10.54 | 139.66 | 201.67 | 18 | ViT_L_16[29] | 21.55 | 11.09 | 305.20 | 815.69 | 3 | ViT_L_32[29] | 21.39 | 11.38 | 306.02 | 175.66 | 17 |
|
Table 5. Comparison of the typical classification model experimental results for fine-grained task on GDIM-CD
Model | TDRNet | MA-CNN[31] | RA-CNN[32] | WS-DAN[33] | TASN[34] | DCL[35] | TransFG[36] |
---|
Backbone | ResNet-50 | VGG-19 | VGG-19 | ResNet-50 | ResNet-50 | ResNet-50 | ViT_B_16 | Top1 err./% | 17.45 | 20.14 | 20.31 | 18.13 | 18.70 | 18.57 | 20.43 | Top5 err./% | 5.20 | 8.54 | 8.29 | 6.18 | 6.72 | 7.04 | 8.97 |
|
Table 6. Comparison of the experimental results with fine-grained classification model for fine-grained task on GDIM-CD