• Photonics Research
  • Vol. 9, Issue 1, 73 (2021)
Liyong Jiang1,4,†,*, Jianli Jiang1,†, Zebin Zhu1..., Guanghui Yuan2, Ming Kang3 and Ze Xiang Shen2,5,*|Show fewer author(s)
Author Affiliations
  • 1Institute of Micro-nano Photonics & Beam Steering, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
  • 2Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
  • 3College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387, China
  • 4e-mail: jly@njust.edu.cn
  • 5e-mail: zexiang@ntu.edu.sg
  • show less
    DOI: 10.1364/PRJ.404355 Cite this Article Set citation alerts
    Liyong Jiang, Jianli Jiang, Zebin Zhu, Guanghui Yuan, Ming Kang, Ze Xiang Shen, "Plasmonic evolution maps for planar metamaterials," Photonics Res. 9, 73 (2021) Copy Citation Text show less
    References

    [1] N. I. Zheludev. The road ahead for metamaterials. Science, 328, 582-583(2010).

    [2] Y. M. Liu, X. Zhang. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev., 40, 2494-2507(2011).

    [3] H. T. Chen, A. J. Taylor, N. F. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [4] S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, C. R. Simovski. Metasurfaces: from microwaves to visible. Phys. Rep., 634, 1-72(2016).

    [5] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [6] U. Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am., 31, 213-222(1941).

    [7] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater., 9, 707-715(2010).

    [8] N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett., 101, 253903(2008).

    [9] N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [10] J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han, W. L. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [11] Y. Li, S. Kita, P. Munoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar, E. Mazur. On-chip zero-index metamaterials. Nat. Photonics, 9, 738-743(2015).

    [12] H. C. Chu, Q. Li, B. B. Liu, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou, Y. Lai. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci. Appl., 7, 50(2018).

    [13] H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. M. Menon. Topological transitions in metamaterials. Science, 336, 205-209(2012).

    [14] W. J. Chen, S. J. Jiang, X. D. Chen, B. C. Zhu, L. Zhou, J. W. Dong, C. T. Chan. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun., 5, 5782(2014).

    [15] J. Cha, K. W. Kim, C. Daraio. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature, 564, 229-233(2018).

    [16] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [17] X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, Q. H. Xiong. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett., 11, 3232-3238(2011).

    [18] C. H. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater., 11, 69-75(2012).

    [19] E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol., 5, 783-787(2010).

    [20] C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, G. Shvets. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun., 5, 3892(2014).

    [21] Y. Chen, J. Gao, X. D. Yang. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett., 18, 520-527(2018).

    [22] Y. Zhao, A. Alu. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett., 13, 1086-1091(2013).

    [23] Y. J. Chiang, T. J. Yen. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Appl. Phys. Lett., 102, 011129(2013).

    [24] S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun, M. Wang. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X, 4, 021026(2014).

    [25] M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers, N. I. Zheludev. Two-dimensional control of light with light on metasurfaces. Light Sci. Appl., 5, e16070(2016).

    [26] A. Xomalis, I. Demirtzioglou, E. Plum, Y. Jung, V. Nalla, C. Lacava, K. F. MacDonald, P. Petropoulos, D. J. Richardson, N. I. Zheludev. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun., 9, 182(2018).

    [27] H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics, 2, 295-298(2008).

    [28] G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmueller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, J. Faist. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 335, 1323-1326(2012).

    [29] F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schoenenberger, J. W. Choi, H. G. Park, M. Beck, J. Faist. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Lett., 13, 3193-3198(2013).

    [30] R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere, D. A. Ritchie. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene. ACS Nano, 8, 2548-2554(2014).

    [31] N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, G. Shvets. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photon., 2, 216-227(2015).

    [32] P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist, G. R. Nash. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nat. Commun., 6, 8969(2015).

    [33] O. Balci, N. Kakenov, E. Karademir, S. Balci, S. Cakmakyapan, E. O. Polat, H. Caglayan, E. Ozbay, C. Kocabas. Electrically switchable metadevices via graphene. Sci. Adv., 4, eaao1749(2018).

    [34] A. Chanana, X. J. Liu, C. Zhang, Z. V. Vardeny, A. Nahata. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Sci. Adv., 4, eaar7353(2018).

    [35] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [36] S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. B. Xu, C. H. Kuan, T. Li, S. N. Zhu, D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [37] L. L. Huang, X. Z. Chen, H. Muhlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [38] G. X. Zheng, H. Muhlenbernd, M. Kenney, G. X. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [39] G. H. Yuan, N. I. Zheludev. Detecting nanometric displacements with optical ruler metrology. Science, 364, 771-775(2019).

    [40] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 330, 377-445(1908).

    [41] M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu, M. Premaratne. Critical route for coherent perfect absorption in a Fano resonance plasmonic system. Appl. Phys. Lett., 105, 223301(2014).

    [42] J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer, T. Pertsch. Multipole approach to metamaterials. Phys. Rev. A, 78, 043811(2008).

    [43] L. Y. Jiang, T. T. Yin, A. M. Dubrovkin, Z. G. Dong, Y. T. Chen, W. J. Chen, J. K. W. Yang, Z. X. Shen. In-plane coherent control of plasmon resonances for plasmonic switching and encoding. Light Sci. Appl., 8, 21(2019).

    [44] J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, M. Sorolla. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Antennas Wireless Propag. Lett., 53, 1451-1461(2005).

    [45] K. G. Balmain, A. A. E. Luttgen, P. C. Kremer. Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial. IEEE Antennas Wireless. Propag. Lett., 1, 146-149(2002).

    [46] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg. Optical properties of two interacting gold nanoparticles. Opt. Commun., 220, 137-141(2003).

    [47] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science, 302, 419-422(2003).

    [48] P. K. Jain, M. A. El-Sayed. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett., 487, 153-164(2010).

    [49] N. J. Halas, S. Lal, W. S. Chang, S. Link, P. Nordlander. Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 111, 3913-3961(2011).

    [50] B. Memarzadeh, H. Mosallaei. Array of planar plasmonic scatterers functioning as light concentrator. Opt. Lett., 36, 2569-2571(2011).

    [51] S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, L. Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [52] H. C. Guo, N. Liu, L. W. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, H. Giessen. Resonance hybridization in double split-ring resonator metamaterials. Opt. Express, 15, 12095-12101(2007).

    [53] N. Liu, S. Kaiser, H. Giessen. Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv. Mater., 20, 4521-4525(2008).

    [54] K. Aydin, I. M. Pryce, H. A. Atwater. Symmetry breaking and strong coupling in planar optical metamaterials. Opt. Express, 18, 13407-13417(2010).

    [55] F. V. Cube, S. Irsen, R. Diehl, J. Niegemann, K. Busch, S. Linden. From isolated metaatoms to photonic metamaterials: evolution of the plasmonic near-field. Nano Lett., 13, 703-708(2013).

    [56] R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W. L. Zhang. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl. Phys. Lett., 99, 201107(2011).

    [57] R. Singh, I. A. I. Al-Naib, M. Koch, W. Zhang. Asymmetric planar terahertz metamaterials. Opt. Express, 18, 13044-13050(2010).

    [58] R. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul, W. L. Zhang. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett., 105, 171101(2014).

    [59] F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin, M. Sorolla. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett., 93, 197401(2004).

    [60] H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, W. J. Padilla. Complementary planar terahertz metamaterials. Opt. Express, 15, 1084-1095(2007).

    [61] R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, W. L. Zhang. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt. Lett., 33, 1506-1508(2008).

    Liyong Jiang, Jianli Jiang, Zebin Zhu, Guanghui Yuan, Ming Kang, Ze Xiang Shen, "Plasmonic evolution maps for planar metamaterials," Photonics Res. 9, 73 (2021)
    Download Citation