• Infrared and Laser Engineering
  • Vol. 52, Issue 12, 20230351 (2023)
Yaru Li1、2, Liang Zhou1、*, Zhaohui Liu1, and Wenji She1
Author Affiliations
  • 1Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/IRLA20230351 Cite this Article
    Yaru Li, Liang Zhou, Zhaohui Liu, Wenji She. The construction method of space-based digital imaging link mathematical model[J]. Infrared and Laser Engineering, 2023, 52(12): 20230351 Copy Citation Text show less
    Technical diagram of the space-based digital imaging system for planar targets
    Fig. 1. Technical diagram of the space-based digital imaging system for planar targets
    Illustration of coordinate position relationships
    Fig. 2. Illustration of coordinate position relationships
    Diagram illustrating line-of-sight position relationships
    Fig. 3. Diagram illustrating line-of-sight position relationships
    Partitioning of geometric surface mesh based on different distance functions. (a) Square; (b) Sphere; (c) Circular ring; (d) Cube
    Fig. 4. Partitioning of geometric surface mesh based on different distance functions. (a) Square; (b) Sphere; (c) Circular ring; (d) Cube
    Schematic diagram of light source importance sampling for radiative transfer path
    Fig. 5. Schematic diagram of light source importance sampling for radiative transfer path
    Illustration of the number of bounding boxes for different layer depths. (a) Layer depth 1; (b) Layer depth 2; (c) Layer depth 4; (d) Layer depth 6
    Fig. 6. Illustration of the number of bounding boxes for different layer depths. (a) Layer depth 1; (b) Layer depth 2; (c) Layer depth 4; (d) Layer depth 6
    Modulation transfer function and mathematical representation of noise in imaging process
    Fig. 7. Modulation transfer function and mathematical representation of noise in imaging process
    (a), (b) Represent the position error values between the calculated results of the camera and target for 24 hours and 15 days, respectively, using the mathematical model, and the simulated results from STK
    Fig. 8. (a), (b) Represent the position error values between the calculated results of the camera and target for 24 hours and 15 days, respectively, using the mathematical model, and the simulated results from STK
    Results of target visibility time periods within 15 days. (a) Visibility model calculation result; (b) STK simulation result
    Fig. 9. Results of target visibility time periods within 15 days. (a) Visibility model calculation result; (b) STK simulation result
    Imaging results at different distances within the visible time period
    Fig. 10. Imaging results at different distances within the visible time period
    Imaging results under different poses and lighting directions
    Fig. 11. Imaging results under different poses and lighting directions
    (a) Three-dimensional schematic of the high-frequency vibration transfer function MTF for the imaging platform; (b) Spectrum plot within the cutoff frequency
    Fig. 12. (a) Three-dimensional schematic of the high-frequency vibration transfer function MTF for the imaging platform; (b) Spectrum plot within the cutoff frequency
    The influence of different amplitudes of high-frequency vibrations on MTF
    Fig. 13. The influence of different amplitudes of high-frequency vibrations on MTF
    (a) Target radiance image; (b) Image with added high-frequency platform vibrations; (c) Image with added photon noise; (d) Image with the combined effects of high-frequency vibrations and photon noise
    Fig. 14. (a) Target radiance image; (b) Image with added high-frequency platform vibrations; (c) Image with added photon noise; (d) Image with the combined effects of high-frequency vibrations and photon noise
    ParameterMethod of calculation
    T is the Julian century number calculated from January 1, 2000, 12:00.
    Semimajor axis/kma= 149597870
    Eccentricitye= 0.01670862 − 0.0004204T0.00000124T2
    Inclination/(°)i = 23°26'21''.448 − 46''.8150− 0''.00059T2 + 0''.001813T3
    RAAN/(°)$\varOmega = 0$
    Argument of perigee/(°)ω= 282°56'14''.45 + 6190''.32T + 1''.655T2 + 0''.012T3
    Mean anomaly/(°)M= 357°31'44''.76 + 129596581''.04T 0''.562T2− 0''.012T3
    Table 1. Average orbital elements of the Sun
    AreaSolution method
    GEarth$\begin{gathered} \left\{ {\left. { { {\boldsymbol{r} }_c},{R_E},{ {\boldsymbol{r} }_o},{h_0},{ {\boldsymbol{r} }_{co} } } \right|\beta > {\beta _0} {\text{or}} (\beta < {\beta _0}\; {\rm{and} } \; \alpha < {\alpha _0})} \right\} \\ = \left\{ \begin{gathered} \left. { { {\boldsymbol{r} }_c},{R_E},{ {\boldsymbol{r} }_o},{h_0},{ {\boldsymbol{r} }_{co} } } \right| \arccos \left( {\frac{ { - { {\boldsymbol{r} }_c} \cdot { {\boldsymbol{r} }_{co} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right| \cdot \left| { { {\boldsymbol{r} }_{co} } } \right|} } } \right) > \arccos \frac{ {\sqrt { { {\left| { { {\boldsymbol{r} }_c} } \right|}^2} - { {({h_0} + {R_E})}^2} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right|} }or \\ \left( {\left( {\arccos \left( {\frac{ { - { {\boldsymbol{r} }_c} \cdot { {\boldsymbol{r} }_{co} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right| \cdot \left| { { {\boldsymbol{r} }_{co} } } \right|} } } \right) < \arccos \frac{ {\sqrt { { {\left| { { {\boldsymbol{r} }_c} } \right|}^2} - { {({h_0} + {R_E})}^2} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right|} } } \right)\;{\rm{and} }\; \left( {\arccos \left( {\frac{ { { {\boldsymbol{r} }_o} \cdot { {\boldsymbol{r} }_c} } }{ {\left| { { {\boldsymbol{r} }_o} } \right| \cdot \left| { { {\boldsymbol{r} }_c} } \right|} } } \right) < \arccos \frac{ {\sqrt { { {\left| { { {\boldsymbol{r} }_c} } \right|}^2} - { {({h_0} + {R_E})}^2} } } }{ {\left| { { {\boldsymbol{r} }_c} } \right|} } } \right)} \right) \\ \end{gathered} \right\} \\ \end{gathered}$$ \begin{gathered} {{\boldsymbol{r}}_c},{{\boldsymbol{r}}_o}{\text{ and }}{{\boldsymbol{r}}_s}{\text{ are the distances from the camera, target, and sun to the center of the earth, respectively;}}\;{R_E}{\text{ is the Earth radius}};{h_0}{\text{ is the height of the critical line of sight}} \\ {\text{ from the ground; }}{{\boldsymbol{r}}_{co}}{\text{ is the distance from the target to the camera;}}\;\beta {\text{ is the angle between - }}{{\boldsymbol{r}}_c}{\text{ and }}{{\boldsymbol{r}}_{co}};\;{\beta _0}{\text{ is the angle between thecritical axis of view and - }}{{\boldsymbol{r}}_c}; \\ \alpha {\text{ is the angle between }}{{\boldsymbol{r}}_c}{\text{ and }}{{\boldsymbol{r}}_o};\;{\alpha _0}{\text{ is the angle between the perpendicular of the critical axis of view and the center of the earth and }}{{\boldsymbol{r}}_c}. \\ \end{gathered} $
    GEclipse$\left\{ { { {\boldsymbol{r} }_o},{ {\boldsymbol{r} }_s}|\gamma \leqslant \pi /2{\text{or } }\left| { { {\boldsymbol{r} }_o} } \right|\sin \gamma > {R_E} } \right\} = \left\{ { { {\boldsymbol{r} }_o},{ {\boldsymbol{r} }_s}|\dfrac{ { { {\boldsymbol{r} }_o} \cdot { {\boldsymbol{r} }_s} } }{ {\left| { { {\boldsymbol{r} }_o} } \right| \cdot \left| { { {\boldsymbol{r} }_s} } \right|} } \geqslant 0{\text{ or } }\left| { { {\boldsymbol{r} }_o} } \right|\sin (\arccos (\dfrac{ { { {\boldsymbol{r} }_o} \cdot { {\boldsymbol{r} }_s} } }{ {\left| { { {\boldsymbol{r} }_o} } \right| \cdot \left| { { {\boldsymbol{r} }_s} } \right|} })) \geqslant {R_E} } \right\}{\text{ } }\gamma {\text{ is the angle between } }{ {\boldsymbol{r} }_o}{\text{ and } }{ {\boldsymbol{r} }_s}.$
    Gsun$\left\{ { { {\boldsymbol{r} }_{co} },{ {\boldsymbol{r} }_{cs} }|\varUpsilon > {\varUpsilon _0} } \right\} = \left\{ { { {\boldsymbol{r} }_{co} },{ {\boldsymbol{r} }_{cs} }|\dfrac{ { { {\boldsymbol{r} }_{co} } \cdot { {\boldsymbol{r} }_{cs} } } }{ {\left| { { {\boldsymbol{r} }_{co} } } \right| \cdot \left| { { {\boldsymbol{r} }_{cs} } } \right|} } < \cos {\varUpsilon _0} } \right\}$${{\boldsymbol{r}}_{cs}}{\text{ is the distance from the sun to the camera;}}{\Upsilon _0}{\text{ is the critical angle of the solar apparent circular plane}}.$
    Gp${\text{Determined by factors such as the field of view angle,detection distance, and signal-to-noise ratio of the detector} }{\text{.} }$
    Table 2. Methods for solving the visible area
    Materialarbrkbkdkr
    Silicon solar panel0.557−261.615.420.0470.717
    Polyimide0.458−51.9028.380.0771.865
    Table 3. Fitted parameter values for satellite surface material BRDF
    ItemValueItemValue
    Focal length4.5 mNumber of pixels1024×1024
    Simulation band450-850 nmPixel size6.5 μm× 6.5 μm
    Camera aperture0.36 mQuantum efficiency55%
    Lens transmission efficiency $ \geqslant 0.7$Full well charge30 K
    Quantization bits11Readout noise2e-
    Number of pixel samples 50Dark current noise35 e-/s
    Table 4. Parameters for lens and detector imaging simulation
    Orbital$a$/km $e$$i$
    Camera6868.85460.006691797.4154
    Satellite6796.71420.000609651.6417
    Orbital$\omega $${\varOmega }$M
    Camera140.0776200.0074183.0867
    Satellite117.620140.29437.3764
    Table 5. On orbit camera and target orbit parameters
    DateCalculation results
    Solar apparent right ascension/ h m s Solar apparent declination/ (°)(′)(″)
    Jan. 1st18 45 52−23 01 03
    Feb. 1st20 58 15−17 09 46
    Mar. 1st22 47 34−07 40 21
    Apr. 1st00 41 2404 27 11
    May 1st02 32 4915 00 32
    Jun. 1st04 35 3922 01 18
    DateAstronomical calendar query results
    Solar geocentric right ascension/ h m s Solar geocentric declination/ (°)(′)(″)
    Jan. 1st18 45 48−23 01 13
    Feb. 1st20 58 12−17 10 07
    Mar. 1st22 47 31−07 40 25
    Apr. 1st00 41 2104 26 54
    May 1st02 32 4715 00 24
    Jun. 1st04 35 3822 01 20
    Table 6. Calculation and reference table for the position of the Sun at 00:00 on January 1st to June 1st, 2022
    Yaru Li, Liang Zhou, Zhaohui Liu, Wenji She. The construction method of space-based digital imaging link mathematical model[J]. Infrared and Laser Engineering, 2023, 52(12): 20230351
    Download Citation