• Photonics Research
  • Vol. 8, Issue 6, 954 (2020)
Zihao Li1、2、5、†, Zhipeng Yu1、2、†, Hui Hui3、†, Huanhao Li1、2, Tianting Zhong1、2, Honglin Liu4, and Puxiang Lai1、2、*
Author Affiliations
  • 1Deparment of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
  • 2The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
  • 3CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
  • 4Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 5Currently at: Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
  • show less
    DOI: 10.1364/PRJ.388062 Cite this Article Set citation alerts
    Zihao Li, Zhipeng Yu, Hui Hui, Huanhao Li, Tianting Zhong, Honglin Liu, Puxiang Lai. Edge enhancement through scattering media enabled by optical wavefront shaping[J]. Photonics Research, 2020, 8(6): 954 Copy Citation Text show less
    References

    [1] H. Ge, B. Wang, W. Ji, J. Wei, L. Wang, Z. Huang. Photorefractive edge-enhancement and its application to pattern recognition. Proc. SPIE, 5280, 777-784(2004).

    [2] A. Jesacher, S. Furhapter, S. Bernet, M. Ritsch-Marte. Shadow effects in spiral phase contrast microscopy. Phys. Rev. Lett., 94, 233902(2005).

    [3] P. Nisthula, R. Yadhu. A novel method to detect bone cancer using image fusion and edge detection. Int. J. Eng. Comp. Sci., 2, 2012-2018(2013).

    [4] F. Qadir, M. Peer, K. Khan. Efficient edge detection methods for diagnosis of lung cancer based on two-dimensional cellular automata. Adv. Appl. Sci. Res., 3, 2050-2058(2012).

    [5] M. Diwakar, P. K. Patel, K. Gupta. Cellular automata based edge-detection for brain tumor. International Conference on Advances in Computing, Communications and Informatics, 53-59(2013).

    [6] D. Lu, X.-H. Yu, X. Jin, B. Li, Q. Chen, J. Zhu. Neural network based edge detection for automated medical diagnosis. IEEE International Conference on Information and Automation, 343-348(2011).

    [7] F. Zernike. Phase contrast, a new method for the microscopic observation of transparent objects. Physica, 9, 686-698(1942).

    [8] T. Zhu, Y. Zhou, Y. Lou, H. Ye, M. Qiu, Z. Ruan, S. Fan. Plasmonic computing of spatial differentiation. Nat. Commun., 8, 15391(2017).

    [9] A. Grossmann, S. Albeverio, P. Blanchard, M. Hazewinkel, L. Streit. Wavelet transforms and edge detection. Stochastic Processes in Physics and Engineering, 149-157(1988).

    [10] K. Kohlmann. Corner detection in natural images based on the 2-D Hilbert transform. Sig. Process., 48, 225-234(1996).

    [11] M. Ritsch-Marte. Orbital angular momentum light in microscopy. Phil. Trans. R. Soc. A, 375, 20150437(2017).

    [12] X. D. Qiu, F. S. Li, W. H. Zhang, Z. H. Zhu, L. X. Chen. Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica, 5, 208-212(2018).

    [13] S.-K. Liu, C. Yang, S.-L. Liu, Z.-Y. Zhou, Y. Li, Y.-H. Li, Z.-H. Xu, G.-C. Guo, B.-S. Shi. Up-conversion imaging processing with field-of-view and edge enhancement. Phys. Rev. Appl., 11, 044013(2019).

    [14] S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte. Spiral phase contrast imaging in microscopy. Opt. Express, 13, 689-694(2005).

    [15] J. Feinberg. Real-time edge enhancement using the photorefractive effect. Opt. Lett., 5, 330-332(1980).

    [16] J. Huignard, J. Herriau. Real-time coherent object edge reconstruction with Bi12SiO20 crystals. Appl. Opt., 17, 2671-2672(1978).

    [17] J. O. White, A. Yariv. Real-time image processing via four-wave mixing in a photorefractive medium. Landmark Papers on Photorefractive Nonlinear Optics, 455-457(1995).

    [18] C.-S. Guo, Y.-J. Han, J.-B. Xu, J. Ding. Radial Hilbert transform with Laguerre–Gaussian spatial filters. Opt. Lett., 31, 1394-1396(2006).

    [19] Y. Zhou, S. Feng, S. Nie, J. Ma, C. Yuan. Image edge enhancement using Airy spiral phase filter. Opt. Express, 24, 25258-25268(2016).

    [20] L. V. Wang, H.-I. Wu. Biomedical Optics: Principles and Imaging(2012).

    [21] J. W. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).

    [22] Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, Z. Chen. High-resolution optical coherence tomography over a large depth range with an axicon lens. Opt. Lett., 27, 243-245(2002).

    [23] P. Lai, X. Xu, H. Liu, Y. Suzuki, L. V. Wang. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media. J. Biomed. Opt., 16, 080505(2011).

    [24] Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, L. V. Wang. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat. Commun., 6, 5904(2015).

    [25] C. Ma, F. Zhou, Y. Liu, L. V. Wang. Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation. Optica, 2, 869-876(2015).

    [26] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [27] Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2, 110-115(2008).

    [28] I. M. Vellekoop, M. Cui, C. Yang. Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett., 101, 081108(2012).

    [29] K. Si, R. Fiolka, M. Cui. Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nat. Photonics, 6, 657-661(2012).

    [30] J.-H. Park, Z. Yu, K. Lee, P. Lai, Y. Park. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications. APL Photon., 3, 100901(2018).

    [31] H. Liu, X. Xu, P. Lai, L. V. Wang. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths. J. Biomed. Opt., 16, 086009(2011).

    [32] Z. Yu, M. Xia, H. Li, T. Zhong, F. Zhao, H. Deng, Z. Li, D. Li, D. Wang, P. Lai. Implementation of digital optical phase conjugation with embedded calibration and phase rectification. Sci. Rep., 9, 1537(2019).

    [33] Z. Yu, J. Huangfu, F. Zhao, M. Xia, X. Wu, X. Niu, D. Li, P. Lai, D. Wang. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media. Sci. Rep., 8, 2927(2018).

    [34] Y. Liu, C. Ma, Y. Shen, J. Shi, L. V. Wang. Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. Optica, 4, 280-288(2017).

    [35] D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, C. Yang. Focusing through dynamic tissue with millisecond digital optical phase conjugation. Optica, 2, 728-735(2015).

    [36] E. F. Donnelly, R. R. Price, D. R. Pickens. Quantification of the effect of system and object parameters on edge enhancement in phase-contrast radiography. Med. Phys., 30, 2888-2896(2003).

    [37] E. F. Donnelly, R. R. Price. Quantification of the effect of kVp on edge-enhancement index in phase-contrast radiography. Med. Phys., 29, 999-1002(2002).

    [38] C. Ma, X. Xu, Y. Liu, L. V. Wang. Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. Nat. Photonics, 8, 931-936(2014).

    CLP Journals

    [1] Yunqi Luo, Suxia Yan, Huanhao Li, Puxiang Lai, Yuanjin Zheng. Towards smart optical focusing: deep learning-empowered dynamic wavefront shaping through nonstationary scattering media[J]. Photonics Research, 2021, 9(8): B262

    [2] Huanhao Li, Chi Man Woo, Tianting Zhong, Zhipeng Yu, Yunqi Luo, Yuanjin Zheng, Xin Yang, Hui Hui, Puxiang Lai. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm[J]. Photonics Research, 2021, 9(2): 202

    Zihao Li, Zhipeng Yu, Hui Hui, Huanhao Li, Tianting Zhong, Honglin Liu, Puxiang Lai. Edge enhancement through scattering media enabled by optical wavefront shaping[J]. Photonics Research, 2020, 8(6): 954
    Download Citation