• Frontiers of Optoelectronics
  • Vol. 14, Issue 3, 360 (2021)
Meng YE*, Yong WANG, Peng GAO, Likun XU, and Guanjin HUANG
Author Affiliations
  • CSG Power Generation Company Information Communication Branch, Guangzhou 510070, China
  • show less
    DOI: 10.1007/s12200-020-0986-2 Cite this Article
    Meng YE, Yong WANG, Peng GAO, Likun XU, Guanjin HUANG. Experimental Hong–Ou–Mandel interference using two independent heralded single-photon sources[J]. Frontiers of Optoelectronics, 2021, 14(3): 360 Copy Citation Text show less
    References

    [1] Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, 74(1): 145–195

    [2] Bouwmeester D, Pan JW, Mattle K, Eibl M,Weinfurter H, Zeilinger A. Experimental quantum teleportation. Nature, 1997, 390(6660): 575–579

    [3] Briegel H J, Dür W, Cirac J I, Zoller P. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters, 1998, 81(26): 5932–5935

    [4] Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816): 46–52

    [5] Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 1987, 59(18): 2044–2046

    [6] Rarity J G, Tapster P R, Loudon R. Non-classical interference between independent sources. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(7): S171–S175

    [7] Kaltenbaek R, Blauensteiner B, Zukowski M, Aspelmeyer M, Zeilinger A. Experimental interference of independent photons. Physical Review Letters, 2006, 96(24): 240502

    [8] Beugnon J, Jones M P, Dingjan J, Darquié B, Messin G, Browaeys A, Grangier P. Quantum interference between two single photons emitted by independently trapped atoms. Nature, 2006, 440(7085): 779–782

    [9] ennett A J, Patel R B, Nicoll C A, Ritchie D A, Shields A J. Interference of dissimilar photon sources. Nature Physics, 2009, 5 (10): 715–717

    [10] Bennet C H, Brassard G. Quantum Cryptography: Public-Key Distribution and Tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984, 175–179

    [11] Zhang C M, Li M, Huang J Z, Li H W, Li F Y, Wang C, Yin Z Q, Chen W, Han Z F, Treeviriyanupab P, Sripimanwat K. Fast implementation of length-adaptive privacy amplification in quantum key distribution. Chinese Physics B, 2014, 23(9): 090310

    [12] Zhang C M, Song X T, Treeviriyanupab P, Li M, Wang C, Li H W, Yin Z Q, Chen W, Han Z F. Delayed error verification in quantum key distribution. Chinese Science Bulletin, 2014, 59(23): 2825– 2828

    [13] Li M, Patcharapong T, Zhang C M, Yin Z Q, Chen W, Han Z F. Efficient error estimation in quantum key distribution. Chinese Physics B, 2015, 24(1): 010302

    [14] Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C, Han Z F. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Physical Review X, 2019, 9(2): 021046

    [15] Li Y P, Chen W,Wang F X, Yin Z Q, Zhang L, Liu H,Wang S, He D Y, Zhou Z, Guo G C, Han Z F. Experimental realization of a reference-frame-independent decoy BB84 quantum key distribution based on Sagnac interferometer. Optics Letters, 2019, 44(18): 4523– 4526

    [16] Lu F Y, Yin Z Q, Cui C H, Fan-Yuan G J, Wang R, Wang S, Chen W, He D Y, Huang W, Xu B J, Guo G C, Han Z F. Improving the performance of twin-field quantum key distribution. Physical Review A, 2019, 100(2): 022306

    [17] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Physical Review Letters, 2012, 108(13): 130503

    [18] Ferreira da Silva T, Vitoreti D, Xavier G B, do Amaral G C, Tempor?o G P, von der Weid J P. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Physical Review A, 2013, 88(5): 052303

    [19] Rubenok A, Slater J A, Chan P, Lucio-Martinez I, Tittel W. Realworld two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Physical Review Letters, 2013, 111(13): 130501

    [20] Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L,Ma X, Pelc J S, FejerMM, Peng C Z, Zhang Q, Pan J W. Experimental measurement-device-independent quantum key distribution. Physical Review Letters, 2013, 111(13): 130502

    [21] Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H K. Experimental demonstration of polarization encoding measurement-deviceindependent quantum key distribution. Physical Review Letters, 2014, 112(19): 190503

    [22] Chen H, An X B,Wu J, Yin Z Q,Wang S, Chen W, Han Z F. Hong– Ou–Mandel interference with two independent weak coherent states. Chinese Physics B, 2016, 25(2): 020305

    [23] Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A. Experimental decoy-state quantum key distribution with a sub-poissionian heralded singlephoton source. Physical Review Letters, 2008, 100(9): 090501

    [24] Zukowski M, Zeilinger A, Weinfurter H. Entangling photons radiated by independent pulsed sourcesa. Annals of the New York Academy of Sciences, 1995, 755(1): 91–102

    Meng YE, Yong WANG, Peng GAO, Likun XU, Guanjin HUANG. Experimental Hong–Ou–Mandel interference using two independent heralded single-photon sources[J]. Frontiers of Optoelectronics, 2021, 14(3): 360
    Download Citation