• Laser & Optoelectronics Progress
  • Vol. 51, Issue 9, 90001 (2014)
Xie Wenke*, Ma Haotong, Gao Qiong, and Jiang Wenjie
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop51.090001 Cite this Article Set citation alerts
    Xie Wenke, Ma Haotong, Gao Qiong, Jiang Wenjie. Research Advances in Aero-Optics Adaptive Correction[J]. Laser & Optoelectronics Progress, 2014, 51(9): 90001 Copy Citation Text show less
    References

    [1] Jumper E J, Fitzgerald E J. Recent advances in aero-optics[C]. Progress in Aerospace Sciences, Pergamon: 2001, 37(3): 299-339.

    [2] Jumper E J. Recent advances in the measurement and analysis of dynamic aero-optic interactions (Review Paper)[R]. 28th Plasmadynamics and Lasers Conference, 1997, 2350: 1-25.

    [3] Goorskey D J, Whiteley M R, Gordeyev S, et al.. Recent AAOL in-flight wavefront measurements of aero-optics and implications for aero-optics beam control in tactical laser weapon systems[C]. 42nd AIAA Plasmadynamics and Lasers Conference , 2011, 3282: 1-27.

    [4] Gordeyev S, Jumper E, Hayden T. Aero-optics of supersonic boundary layer[C]. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011, 1325: 1-13.

    [5] Bury M, Doyle K, Sebastian T, et al.. An integrated method for aero-optical analysis[C]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, 286: 1-15.

    [6] Yin Xingliang. Principle of Aero Optics[M]. Beijing: China Astronautic Publishing House, 2003. 301.

    [7] Gilbert K G. KC-135 aero-optical turbulent boundary/shear-layer experiments[C]. Aero-Optical Phenomenon, 1982. 312.

    [8] Hugo E J, Jumper E J. Applicability of aero-optic linking equation to a highly coherent, transitional shear layer[J]. Appl Opt, 2000, 39(24): 4392-4401.

    [9] America Defense Advanced Research Agency. Fiscal year 2013 project arrangement, 2013.

    [10] Rennie R M, Goorskey D, Whiteley M R, et al.. Wavefront measurements of a laser-induced breakdown spark in still air [J]. Appl Opt, 2012, 51(13): 2306-2314.

    [11] Morgan P E, Visbal M R. Effectiveness of flow control for a submerged hemispherical flat-window turret[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, 1015: 1-25.

    [12] Adam E Smith A E, Gordeyev S. Evaluation of passive boundary layer flow control methods for aero-optic mitigation [R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Expostition, 2013, 718: 1-13.

    [13] Porter C, Gordeyev S, Zenk M, et al.. Flight measurements of the aero-optical environment around a flat-windowed turret[J]. AIAA Journal, 2013, 51(6): 1394-1403.

    [14] Lucca1 N D, Gordeyev S, Jumper E. The improvement of the aero-optical environment of a hemisphere-on-cylinder turret using vortex generators[R]. 44th AIAA Plasmadynamics and Lasers Conference, 2013, 3132: 1-16.

    [15] White M D, Visbaly M R. Computational investigation of wall cooling and suction on the aberrating structures in a transonic boundary layer[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, 720: 1-29.

    [16] Duffin D, Gordeyev S, Jumper E. Visualizing index-of-refraction variations in optically active flow fields[C]. 11th international symposium of flow visualization, University of N.D. Indianna, USA, 2004. 1-11.

    [17] Siegenthaler J P, Jumper E J, Gordeyev S. Atmospheric propagation vs. aero-optics[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2008, 1076: 1-6.

    [18] Dimotakis P E, Catrakis H J, Fourguette D C. Flow structure and optical beam propagation in high-reynolds-number gas-phase shear layers and jet[J]. J Fluid Mech, 2001, 433: 105-134.

    [19] Gebhardt F G. Twenty-five years of thermal blooming: an overview[C]. SPIE, 1990, 1221: 2-25.

    [20] Yu M H, Monkewitz. P A. Oscillations in the near field of a heated two-dimensional jet[J]. J Fluid Mech, 1993, 225: 323-347.

    [21] Michnael J S, Neeraj S, John M S, et al.. High frequency flow control-suppression of aero-optics in tactical directed energy beam propagation and the birth of a new model(part I)[C]. 33rd AIAA Plasmadynamics and Lasers Conference, 2002, 2272: 2-3.

    [22] Tyson R K. Principles of Adaptive Optics[M]. Academic Press. New York, 1998. 72.

    [23] Duffin D A, Jumper E J. Feed-forward adaptive-optic correction of aero-optical aberrations caused by a twodimensional heated jet[C]. 36th AIAA Plasmadynamics and Lasers Conference, 2005, 4776: 11.

    [24] Abado S, Gordeyev S, Jumper E J. Two-dimensional high-bandwidth shack-hartmann wavefront sensor: design guidelines and evaluation testing[J]. Opt Engng, 2010, 49(6): 064403.

    [25] Liepmann H W. Deflection and diffusion of a light ray passing through a boundary layer [C]. Douglas aircraft company, Santa Monica Division. Santa Monica, California, 1952.

    [26] Stine H A, Winovich W. Light diffusion through high-speed turbulent boundary layer[C]. research memorandum A56B21. Narronal Advisory Committe for Aeronautics, Washington, 1952.

    [27] Sutton G W. Effects of turbulent fluctuations in an optically active fluid medium[J]. AIAA Journal, 1969, 7(9): 1737-1743.

    [28] Trollinger J D. Aero-optical characterization of aircraft optical turrets by holography interferometry and shadowgraph [C]. Aero-Optical Phenomena, 1982, 80: 2-6.

    [29] Kelsall D. Rapid interferometric technique for MTF measurements in visible or infrared region[J]. Appl Opt, 1973, 12(7): 1398-1399.

    [30] Hugo E J, Jumper E J. Applicability of the aero-optic linking equation to a highly coherent, transitional shear layer[J]. Appl Opt, 2000, 39(24): 4392-4401.

    [31] Gilbert K G, Otten L J. Aero-optical phenomena[C]. Progress in Astronautics and Aeronautics series, New York: American Institute of and Aeronautics Astronautics, 1982. 3-17.

    [32] Mallry M M, Sutton G W, Kincheloe N. Beam-jitter measurements of turbulent aero-optical path differences[J]. Appl Opt, 1992, 31(32): 4440-4443.

    [33] Neichel B, Conan J M, Fusco T, et al.. ELTs Adaptive optics for multi-objects 3D spectroscopy: key parameters and design rules[C]. SPIE, 2006, 6272: 62721X.

    [34] Cuby J G, Morrisb S, Philip P B, et al.. EAGLE: an MOAO fed multi-IFU working in the NIR on the E-ELT[C]. SPIE, 2009. 7439: 74390J.

    [35] Gordeyev S, Duffin D, Jumper E. Aero-optical measurements using malley probe and high-bandwidth 2-D wavefront sensors[C]. International conference on advanced optical diagnostics in fluid, solid and combustion. Tokyo, Japan, 2004. 2.

    [36] Jumper E J. Hugo R J. Optical phase distortion due to turbulent-fluid density field: quantification using the smallaperture beam technique[C]. 23rd AIAA Plasmadynamics and Lasers Conference, 1992, 3020: 2-5.

    [37] Hugo R J, Jumper E J. Experimental measurement of a time-varying optical path difference by the small-aperture beam technique[J]. Appl Opt,1996,35(22):4439-4440

    [38] Xie Wenke, Jiang Zongfu. Wavefront reconstruction arithmetic based on multi-convection velocity[J]. High Power Laser and Particle Beams, 2006, 18(1): 989-992.

    [39] Hugo R J, Jumper E J. Time-resolved wave front measurements through a compressible free shear layer[J]. AIAA Journal, 1997, 35(4): 672-673.

    [40] Neal D R, O′Hern T J, Torczynski J R, et al.. Wavefront sensors for optical diagnostics in fluid mechanics: application to heated flow, turbulence and droplet evaporation[C]. SPIE, 1993, 2005, 2005: 194-203.

    [41] Brian Thurow, Mo Samimy, Walter Lepert. Simultaneous high-resolution optical wavefront and flow diagnostics for high-speed flow[C]. 34th AIAA Plasmadynamics and Lasers Conference, 2003, 3613: 1-3.

    [42] Thurow B, Samimy M, Lempert W. Simultaneous MHz rate visualization and wavefront sensing for aero-optics[R]. 41st Aerospace Sciences Meeting and Exhibit, 2003, 684: 1-2.

    [43] Gordeyev S, Duffin D, Jumper E. Aero-optical measurements using malley probe and high-bandwidth 2-D wavefront sensors[C]. International conference on advanced optical diagnostics in fluid, solid and combustion, Toyota, Japan: 2004. 1-5.

    [44] Fitzgerald E J, Jumper E J. Two dimensional optical wavefront measurements using a small-aperture beam technique derivative instrument[C]. Opt Engng, 2000, 39(12): 3285-3293.

    [45] Qiu Xiang, Liu Yulu. Turbulent coherent structure[J]. Chinese Journal of Nature, 2004, 26(4): 187-188.

    [46] Brown G L, Roshko A. On density effects and large structure in turbulent mixing layer[J]. J Fluid Mechanics, 1974, 64(4): 775-816.

    [47] Lin Jianzhong. Coherent Structure of Turbulence[M]. Beijing: China Machine Press, 1995. 1-10.

    [48] Feng Bingchun, Cui Guixiang, Zhang Zhaoshun. Eeperimental study of fully developed turbulent pipe flow[J]. Acta Mechanica Scinca, 2002, 32(2): 156-166.

    [49] Kurimoto N, Suzuki Y, Kasagi N. Active control of coaxial jet mixing and combustion with arrayed micro actuators[J]. Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, 2001. 511-516.

    [50] Yi Shihe, He Lin, Zhao Yuxin, et al.. A flow control study of a supersonic mixing layer via NPLS[J]. Sci China Ser G, 2009, 39(11): 1640-1645.

    [51] Lumley J L. The Coherent Structure in Turbulence in Transition and Turbulence[M]. Meyer R E, Academic Press, 215-242.

    [52] Yu M H, Monkewitz P A. Oscillations in the near field of a heated two-dimensional jet[J]. J Fluid Mechanics, 1993, 255: 323-347.

    [53] Xie Wenke, Jiang Zongfu, Xu Xiaojun, et al.. Numerical study of the optical inhomogeneity of free heated jet flowfield [J]. High Power Laser and Particle Beams, 2004, 16(8): 989-992.

    [54] Wang Jiansheng, Wang Chenjian, Li Xun. The velocity and temperature properties of coherent structure in turbulence [J]. Journal of Experimental Mechanics, 2002, 17(2): 242-244.

    [55] Li Wanping, Xu Zheng, Zhao Wei. PIV experimental investigation of multi-scale coherent structure intermittency in turbulent flow[J]. J Huazhong University of Sci & Tech (Nature Science Edition), 2007, 35(12): 76-78.

    [56] Lin Jianzhong, Wu Fali, Ni Limin. Three-dimensional wavelet analysis for coherent structures in flow field[J]. Journal of Zhenjiang university (Engineering Science), 2006, 36(2): 156-158.

    [57] Holmes P, Lumley J L, Berkooz G. Turbulence Coherent Structures, Dynamical Systems and Symmetry[M]. Cambridge: Cambridge University Press, 1996. 253.

    [58] Xie Wenke, Jiang Zongfu. Proper orthogonal decomposition and low dimensional approximation of aero-optical aberration wavefronts[J]. Chinses J Laser, 2007, 34(4): 491-495.

    [59] Gordeyev S V, Thomas F O. A temporal proper orthogonal decomposition (TPOD) method for closed-loop flow control [C]. 48th AIAA Aerospace sciences meeting and exhibit, Orlando FL, 2010, 359: 1-3.

    [60] Sutton G W. Effect of turbulent fluctuation in an optically active fluid medium[J]. AIAA Journal, 1969, 7(9): 1737-1743.

    [61] Vu, B T, Sutton G W Theophanis G, et al.. Laser-beam degradation through optically turbulent mixing layers[C]. 13th Fluid and PlasmaDynamics Conference, 1980. 1414.

    [62] Chew L, Christiansent W. Coherent structure effects on the optical performance of plane shear layer[J]. AIAA Journal, 1991, 29(1): 76-80.

    [63] Dimotaksi P, Catrakis H, Fourguette D. Flow structure and optical beam propagation in high-reynolds-number gasphase shear layers and jets[J]. J Fluid Mech, 2001, 433: 105-143.

    [64] Wissler J B, Roshko A. Transmission of thin light beams through turbulent mixing layers[C]. 30th Aerospace Sciences Meeting and Exhibit, 1992, 658: 1-26.

    [65] Garry L Broun, Anatol Roshlco. On density effects and large structure in turbulent mixing layers[J]. J Fluid Mech, 1974, 64(4): 775-816.

    [66] Tsai Y P, Christiansen W H. Two-dimensional numerical simulation of shear-layer optics[J]. AIAA Journal, 1990, 28(12): 2092-2097.

    [67] Debiasi M, Samimy M. An experimental study of the cavity for closed flow control[C]. 33rd AIAA Fluid Dynamics Conference and Exhibit, 2003, 4003: 1-2.

    [68] Cattafesta L N, Williams D R, Rowley C W, et al.. Active control of flow-induced cavity resonance[C]. 28th Fluid Dynamics Conference, 2003, 3567: 1-3.

    [69] Gordeyev S, Jumper E J. The optical environment of a cylindrical turret with a flat window and the impact of passive control devices[C]. 36th AIAA Plasmadynamics and Laser Conference, Toronto, Canada, 2005, 4657: 3-10.

    [70] Gordeyev S, Jumper E, Ng T, et al.. Optical disturbances caused by transonic separated boundary layer behind a 20-degree ramp: physics and control[R]. 42nd AIAA Aeroscience Meeting and Exhibit, Reno, Nevada, 2004: 2-5.

    [71] Schaeffler N W, Hepner T E, Jone G S, et al.. Overview of active flow control actuator development at NASA langley research center[R]. 1st Flow Control Conference, 2002. 3159.

    [72] Meganathan A J, Vakili A D. An experimental study of open cavity flows at low subsonic speeds[R]. 40th AIAA Aerospace Sciences Meeting & Exhibit, 2002, 280: 1-2.

    [73] Roberts F A, Roshko A. Effects of periodic forcing on mixing in turbulent shear layer and wake[R]. Shear Flow Control Conference, 1985, 570: 2-7.

    [74] Xie Wenke. Aero Optical Aberration Wavefront Measurement and Control Methods[D]. Changsha: Graduate School of National University of Defense Technology, 2007. 87-89.

    [75] Kegerise M A, Cattafesta L N, Ha C. Adaptive identification and control of flow induced cavity oscillation[R]. 1st Flow Control Conference, 2000, 3158: 1-5.

    [76] Cain A B, Rubio A D, Borta D M, et al.. Optimizing control of open bay acoustics[R]. 6th Aeroacoustics Conference and Exhibit, 2000-1928: 2.

    [77] Williams D R, Fabris D, Iwanski K, et al.. Closed-loop control in cavities with unsteady bleed forcing[R]. 38th Aerospace Sciences Meeting and Exhibit, 2000, 470: 1.

    [78] Seidel J, Siegel S, McLaughlin T. Feedback flow control of a shear layer for aero-optic applications[R]. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, 356: 1-3.

    [79] Caraballo E, Yuan X, Little J, et al.. Feedback control of cavity flow using experimental based reduced order model[R]. 35th AIAA Fluid Dynamics Conference and Exhibit, 2005, 5269: 1-9.

    [80] Nightingale A M, Goodwine B, Lemmon M, et al..“Feedforward”adaptive-optic system identification analysis for mitigating aero-optic disturbances[R]. 38th Plasmadynamics and Lasers Conference, 2007, 4013: 2-9.

    [81] Vukasinovic B, Glezer A. Flow control for turret aero-optics applications[R]. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, 1014: 2-6.

    [82] Wiltse J M, Glezer A. Direct excitation of small-scale motions in free shear flows[J]. Phys Fluids, 1998, 10(8): 2026-2036.

    [83] Thomas F O, Corke T C, Iqbal M, et al.. Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control[J]. AIAA Journal, 2009, 47(9): 2169-2178.

    [84] Stanek M J, Raman G, Kibens V, et al.. Suppression of cavity resonance using high frequency forcing-the characteristic of effective devices[J]. 7th AIAA/CEAS Aeroacoustics Conference and Exhibit, 2001, 2128: 1-9.

    [85] Meng Lei, Li Xinyang, Jiang Wenhan. Simulation research on real · time adaptive control of an adaptive optical system [J]. Opto-Electronic Engineering, 2001, 28(6): 1-6.

    [86] Li Xinyang, Ling Ning, Chen Donghong, et al.. Stable control of the fast steering mirror in adaptive optical system[J]. High Power Laser and Particle Beams, 1999, 11(1): 31-36.

    [87] Wang Shen, Cao Genrui. Time domain characteristics analysis of adaptive optics system[J]. Optical Technique, 2001, 27(1): 19-20.

    [88] Hugo R J, Jumper E J. Applicability of aero-optic linking equation to a highly coherent, transitional shear layer[J]. Appl Opt, 2000, 24(20): 4392-4401.

    [89] Cicchiello J M, Fitzgerald E J, Jumper E J. Far-field implication of laser transmission through a compressible shear layer[J]. Appl Opt, 1997, 36(25): 6447-6448.

    [90] Ravindraan S S. Reduced-order adaptive controllers for fluids using proper orthogonal decomposition[C]. 39th Aerospace Sciences Meeting and Exhibit, 2001, 925: 2-8.

    CLP Journals

    [1] Yang Fei, Liu Guojun, An Qichang. Analysis of Wavefront Optical Jitter Based on Power Spectral Density[J]. Laser & Optoelectronics Progress, 2015, 52(9): 91201

    Xie Wenke, Ma Haotong, Gao Qiong, Jiang Wenjie. Research Advances in Aero-Optics Adaptive Correction[J]. Laser & Optoelectronics Progress, 2014, 51(9): 90001
    Download Citation