• Chinese Journal of Lasers
  • Vol. 48, Issue 8, 0802002 (2021)
Hongqiang Zhang1、*, Luchan Lin2, Songling Xing2, Hailin Bai2, Peng Peng1, hui Kang1, Wei Guo1, and Lei Liu2
Author Affiliations
  • 1School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
  • 2Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/CJL202148.0802002 Cite this Article Set citation alerts
    Hongqiang Zhang, Luchan Lin, Songling Xing, Hailin Bai, Peng Peng, hui Kang, Wei Guo, Lei Liu. Review on Interfacial Metallurgy and Joining Mechanism of Homogeneous and Heterogeneous Nanoscale Material Interconnection[J]. Chinese Journal of Lasers, 2021, 48(8): 0802002 Copy Citation Text show less
    References

    [1] Zhu J D, Zhang T, Yang Y C et al. A comprehensive review on emerging artificial neuromorphic devices[J]. Applied Physics Reviews, 7, 011312(2020).

    [2] Jesse S, Borisevich A Y, Fowlkes J D et al. Directing matter: toward atomic-scale 3D nanofabrication[J]. ACS Nano, 10, 5600-5618(2016).

    [3] Lee C, Oh Y, Yoon I S et al. Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices[J]. Scientific Reports, 8, 2763(2018).

    [4] Hu H P, Tang B, Wan H et al. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array[J]. Nano Energy, 69, 104427(2020).

    [5] Han S, Hong S, Ham J et al. Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics[J]. Advanced Materials, 26, 5808-5814(2014).

    [6] Nian Q, Saei M, Xu Y et al. Crystalline nanojoining silver nanowire percolated networks on flexible substrate[J]. ACS Nano, 9, 10018-10031(2015).

    [7] Lu H F, Zhang D, Cheng J Q et al. Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach[J]. Advanced Functional Materials, 25, 4211-4218(2015).

    [8] Kroemer H. Quasi-electric fields and band offsets: teaching electrons new tricks (Nobel lecture)[J]. ChemPhysChem, 2, 490-499(2001).

    [9] Wang R R, Zhai H T, Wang T et al. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors[J]. Nano Research, 9, 2138-2148(2016).

    [10] Xia Y, Xiong Y, Lim B et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?[J]. Angewandte Chemie (International Ed. in English), 48, 60-103(2009).

    [11] He P, Jiao Z, Wang J et al. Research and application of joining technology at nanometer scale[J]. Transactions of the China Welding Institution, 34, 109-112,118(2013).

    [12] Zou G S, Yan J F, Mu F W et al. Recent progress in microjoining and nanojoining[J]. Transactions of the China Welding Institution, 32, 107-112,118(2011).

    [13] Zhou Y, Hu A. From microjoining to nanojoining[J]. The Open Surface Science Journal, 3, 32-41(2011).

    [14] Zhou Y N. Microjoining and nanojoining[M](2008).

    [15] Li D, Nielsen M H, Lee J R et al. Direction-specific interactions control crystal growth by oriented attachment[J]. Science, 336, 1014-1018(2012). http://www.ncbi.nlm.nih.gov/pubmed/22628650

    [16] Chen C X, Yan L J, Kong E S W et al. Ultrasonic nanowelding of carbon nanotubes to metal electrodes[J]. Nanotechnology, 17, 2192-2197(2006).

    [17] Peng P, Guo W, Zhu Y et al. Nanoscale wire bonding of individual Ag nanowires on Au substrate at room temperature[J]. Nano-Micro Letters, 9, 26(2017).

    [18] Qu K, Zhang H, Lan Q Q et al. Realization of the welding of individual TiO2 semiconductor nano-objects using a novel 1D Au80Sn20 nanosolder[J]. Journal of Materials Chemistry C, 3, 11311-11317(2015).

    [19] Spencer M J S, Wong K W J, Yarovsky I. Surface defects on ZnO nanowires: implications for design of sensors[J]. Journal of Physics: Condensed Matter, 24, 305001(2012).

    [20] Lin L C. Research on femtosecond laser induced joining of nanomaterials and their optical/electrical properties[D]. Beijing: Tsinghua University, 2-18(2017).

    [21] Maruyama M, Matsubayashi R, Iwakuro H et al. Silver nanosintering: a lead-free alternative to soldering[J]. Applied Physics A, 93, 467-470(2008). http://link.springer.com/article/10.1007/s00339-008-4807-5

    [22] Groza J R. Nanosintering[J]. Nanostructured Materials, 12, 987-992(1999).

    [23] Wan H, Gui C Q, Chen D et al. Scattering force and heating effect in laser-induced plasmonic welding of silver nanowire junctions[J]. Applied Optics, 59, 2186-2191(2020).

    [24] Yang S B, Choi H, Lee D S et al. Improved optical sintering efficiency at the contacts of silver nanowires encapsulated by a graphene layer[J]. Small, 11, 1293-1300(2015).

    [25] Cui J L, Wang X W, Barayavuga T et al. Nanojoining of crossed Ag nanowires: a molecular dynamics study[J]. Journal of Nanoparticle Research, 18, 175(2016).

    [26] Peng P, Liu L, Gerlich A P et al. Self-oriented nanojoining of silver nanowires via surface selective activation[J]. Particle & Particle Systems Characterization, 30, 420-426(2013).

    [27] Comby S, Gunnlaugsson T. Luminescent lanthanide-functionalized gold nanoparticles: exploiting the interaction with bovine serum albumin for potential sensing applications[J]. ACS Nano, 5, 7184-7197(2011).

    [28] Kang S J L. Sintering: densification, grain growth and microstructure[M]. Burlington: Elsevier Butterworth-Heinemann(2005).

    [29] Ingham B, Lim T H, Dotzler C J et al. How nanoparticles coalesce: an in situ study of Au nanoparticle aggregation and grain growth[J]. Chemistry of Materials, 23, 3312-3317(2011).

    [30] Uematsu T, Baba M, Oshima Y et al. Atomic resolution imaging of gold nanoparticle generation and growth in ionic liquids[J]. Journal of the American Chemical Society, 136, 13789-13797(2014).

    [31] Ahn J, Seo J W, Kim J Y et al. Self-supplied nano-fusing and transferring metal nanostructures via surface oxide reduction[J]. ACS Applied Materials & Interfaces, 8, 1112-1119(2016).

    [32] Fang J X, You H J, Kong P et al. Dendritic silver nanostructure growth and evolution in replacement reaction[J]. Crystal Growth & Design, 7, 864-867(2007).

    [33] Wang S, Li M Y, Ji H J et al. Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging[J]. Scripta Materialia, 69, 789-792(2013).

    [34] Zhang H Q, Wang W G, Bai H L et al. Microstructural and mechanical evolution of silver sintering Die attach for SiC power devices during high temperature applications[J]. Journal of Alloys and Compounds, 774, 487-494(2019).

    [35] Zhang H Q, Zhao Z Y, Zou G S et al. Failure analysis and reliability evaluation of silver-sintered Die attachment for high-temperature applications[J]. Microelectronics Reliability, 94, 46-55(2019). http://www.sciencedirect.com/science/article/pii/S0026271419300988

    [36] Feng B, Shen D Z, Wang W G et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces, 11, 16972-16980(2019).

    [37] Jia Q, Zou G S, Wang W G et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces, 12, 16743-16752(2020).

    [38] da Silva E Z, Faccin G M, Machado T R et al. Connecting theory with experiment to understand the sintering processes of Ag nanoparticles[J]. The Journal of Physical Chemistry C, 123, 11310-11318(2019).

    [39] Halas N J, Lal S, Chang W S et al. Plasmons in strongly coupled metallic nanostructures[J]. Chemical Reviews, 111, 3913-3961(2011).

    [40] Faccin G M, San-Miguel M A, Andres J et al. Computational modeling for the Ag nanoparticle coalescence process: a case of surface plasmon resonance[J]. The Journal of Physical Chemistry C, 121, 7030-7036(2017).

    [41] Buesser B, Gröhn A J, Pratsinis S E. Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics[J]. The Journal of Physical Chemistry C, 115, 11030-11035(2011).

    [42] Schwesig D, Schierning G, Theissmann R et al. From nanoparticles to nanocrystalline bulk: percolation effects in field assisted sintering of silicon nanoparticles[J]. Nanotechnology, 22, 135601(2011).

    [43] Asoro M A, Kovar D, Shao-Horn Y et al. Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM[J]. Nanotechnology, 21, 025701(2010).

    [44] Zeng Q H, Yu A B, Lu G Q. Evaluation of interaction forces between nanoparticles by molecular dynamics simulation[J]. Industrial & Engineering Chemistry Research, 49, 12793-12797(2010).

    [45] Wang J D, Chen S, Cui K et al. Approach and coalescence of gold nanoparticles driven by surface thermodynamic fluctuations and atomic interaction forces[J]. ACS Nano, 10, 2893-2902(2016). http://europepmc.org/abstract/MED/26756675

    [46] Guo C F, Lan Y C, Sun T Y et al. Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes[J]. Nano Energy, 8, 110-117(2014).

    [47] Liu L, Shen D Z, Zou G S et al. Cold welding of Ag nanowires by large plastic deformation[J]. Scripta Materialia, 114, 112-116(2016). http://www.sciencedirect.com/science/article/pii/S1359646215300816

    [48] Liu Y, Zhang J M, Gao H et al. Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes[J]. Nano Letters, 17, 1090-1096(2017).

    [49] Lu Y, Huang J Y, Wang C et al. Cold welding of ultrathin gold nanowires[J]. Nature Nanotechnology, 5, 218-224(2010).

    [50] Kim C, Burrows P E, Forrest S R. Micropatterning of organic electronic devices by cold-welding[J]. Science, 288, 831-833(2000).

    [51] Cha S H, Park Y, Han J W et al. Cold welding of gold nanoparticles on mica substrate: self-adjustment and enhanced diffusion[J]. Scientific Reports, 6, 32951(2016).

    [52] Li L S, Jiang L, Tsai L T et al. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅱ: phase change[J]. Chinese Journal of Lasers, 36, 1029-1036(2009).

    [53] Chen Y, Palmer R E, Wilcoxon J P. Sintering of passivated gold nanoparticles under the electron beam[J]. Langmuir, 22, 2851-2855(2006). http://pubs.acs.org/cgi-bin/abstract.cgi/langd5/2006/22/i06/abs/la0533157.html

    [54] Tokuno T, Nogi M, Karakawa M et al. Fabrication of silver nanowire transparent electrodes at room temperature[J]. Nano Research, 4, 1215-1222(2011).

    [55] Brongersma M L, Halas N J, Nordlander P. Plasmon-induced hot carrier science and technology[J]. Nature Nanotechnology, 10, 25-34(2015). http://europepmc.org/abstract/med/25559968

    [56] Baffou G, Quidant R, Girard C. Heat generation in plasmonic nanostructures: influence of morphology[J]. Applied Physics Letters, 94, 153109(2009).

    [57] Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat[J]. Laser & Photonics Reviews, 7, 171-187(2013).

    [58] Garnett E C, Cai W, Cha J J et al. Self-limited plasmonic welding of silver nanowire junctions[J]. Nature Materials, 11, 241-249(2012).

    [59] Moocarme M, Kusin B, Vuong L T. Plasmon-induced Lorentz forces of nanowire chiral hybrid modes[J]. Optical Materials Express, 4, 2355-2367(2014).

    [60] González-Rubio G, González-Izquierdo J, Bañares L et al. Femtosecond laser-controlled tip-to-tip assembly and welding of gold nanorods[J]. Nano Letters, 15, 8282-8288(2015).

    [61] Jin B, Sushko M L, Liu Z M et al. In situ liquid cell TEM reveals bridge-induced contact and fusion of Au nanocrystals in aqueous solution[J]. Nano Letters, 18, 6551-6556(2018).

    [62] Aabdin Z, Lu J Y, Zhu X et al. Bonding pathways of gold nanocrystals in solution[J]. Nano Letters, 14, 6639-6643(2014).

    [63] Xia B Y, Wu H B, Yan Y et al. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity[J]. Journal of the American Chemical Society, 135, 9480-9485(2013).

    [64] Liao H G, Cui L K, Whitelam S et al. Real-time imaging of Pt3Fe nanorod growth in solution[J]. Science, 336, 1011-1014(2012).

    [65] Peng Z M, You H J, Yang H. Composition-dependent formation of platinum silver nanowires[J]. ACS Nano, 4, 1501-1510(2010).

    [66] Park S, Wang G, Cho B et al. Flexible molecular-scale electronic devices[J]. Nature Nanotechnology, 7, 438-442(2012).

    [67] Rogers J A. A diverse printed future[J]. Nature, 468, 177-178(2010).

    [68] Xiao M, Zheng S, Shen D Z et al. Laser-induced joining of nanoscale materials: processing, properties, and applications[J]. Nano Today, 35, 100959(2020). http://www.sciencedirect.com/science/article/pii/S1748013220301286

    [69] Peng P, Hu A M, Gerlich A P et al. Joining of silver nanomaterials at low temperatures: processes, properties, and applications[J]. ACS Applied Materials & Interfaces, 7, 12597-12618(2015).

    [70] Wu X F, Yin H L, Li Q. Femtosecond laser processing of carbon nanotubes film[J]. Chinese Journal of Lasers, 46, 0902002(2019).

    [71] Mafuné F, Kohno J Y, Takeda Y et al. Nanoscale soldering of metal nanoparticles for construction of higher-order structures[J]. Journal of the American Chemical Society, 125, 1686-1687(2003).

    [72] Liu L, Huang H, Hu A et al. Nano brazing of Pt-Ag nanoparticles under femtosecond laser irradiation[J]. Nano-Micro Letters, 5, 88-92(2013).

    [73] Fan L S, Zhang S W, Zhang Q L et al. Research progress on fabrication of one-dimensional well-ordered oxide nanostructures by pulsed laser deposition[J]. Laser & Optoelectronics Progress, 57, 190001(2020).

    [74] Jiao Z, Huang H, Liu L et al. Nanostructure evolution in joining of Al and Fe nanoparticles with femtosecond laser irradiation[J]. Journal of Applied Physics, 115, 134305(2014).

    [75] Jiao Z, Sivayoganathan M, Duley W W et al. Formation and characterization of femtosecond-laser-induced subcluster segregated nanoalloys[J]. The Journal of Physical Chemistry C, 118, 24746-24751(2014).

    [76] Xu X H, Isik T, Kundu S et al. Investigation of laser-induced inter-welding between Au and Ag nanoparticles and the plasmonic properties of welded dimers[J]. Nanoscale, 10, 23050-23058(2018). http://www.ncbi.nlm.nih.gov/pubmed/30511072

    [77] Grouchko M, Roitman P, Zhu X et al. Merging of metal nanoparticles driven by selective wettability of silver nanostructures[J]. Nature Communications, 5, 2994(2014).

    [78] Pereira Z S, da Silva E Z. Cold welding of gold and silver nanowires: a molecular dynamics study[J]. The Journal of Physical Chemistry C, 115, 22870-22876(2011).

    [79] Lin L C, Zou G S, Liu L et al. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units[J]. Applied Physics Letters, 108, 203107(2016).

    [80] Xing S L, Lin L C, Zou G S et al. Two-photon absorption induced nanowelding for assembling ZnO nanowires with enhanced photoelectrical properties[J]. Applied Physics Letters, 115, 103101(2019).

    [81] Lin L C, Liu L, Musselman K et al. Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory[J]. Advanced Functional Materials, 26, 5979-5986(2016). http://dx.doi.org/10.1002/adfm.201601143

    [82] Xu S, Tian M, Wang J et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam[J]. Small, 1, 1221-1229(2005). http://dx.doi.org/10.1002/smll.200500240

    [83] Gu Z, Ye H, Smirnova D et al. Reflow and electrical characteristics of nanoscale solder[J]. Small, 2, 225-229(2006). http://www.ncbi.nlm.nih.gov/pubmed/17193025

    Hongqiang Zhang, Luchan Lin, Songling Xing, Hailin Bai, Peng Peng, hui Kang, Wei Guo, Lei Liu. Review on Interfacial Metallurgy and Joining Mechanism of Homogeneous and Heterogeneous Nanoscale Material Interconnection[J]. Chinese Journal of Lasers, 2021, 48(8): 0802002
    Download Citation