• Advanced Photonics
  • Vol. 6, Issue 4, 046004 (2024)
Lei Lu1, Chenhao Bu1, Zhilong Su2,3,*, Banglei Guan4..., Qifeng Yu4, Wei Pan5 and Qinghui Zhang1|Show fewer author(s)
Author Affiliations
  • 1Henan University of Technology, College of Information Science and Engineering, Zhengzhou, China
  • 2Shanghai University, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai, China
  • 3Shaoxing Research Institute of Shanghai University, Shaoxing, China
  • 4National University of Defense Technology, College of Aerospace Science and Engineering, Changsha, China
  • 5OPT Machine Vision Tech Co., Ltd., Department of Research and Development, Dongguan, China
  • show less
    DOI: 10.1117/1.AP.6.4.046004 Cite this Article Set citation alerts
    Lei Lu, Chenhao Bu, Zhilong Su, Banglei Guan, Qifeng Yu, Wei Pan, Qinghui Zhang, "Generative deep-learning-embedded asynchronous structured light for three-dimensional imaging," Adv. Photon. 6, 046004 (2024) Copy Citation Text show less
    References

    [1] A. G. Marrugo, F. Gao, S. Zhang. State-of-the-art active optical techniques for three-dimensional surface metrology: a review. J. Opt. Soc. Am. A, 37, B60-B77(2020).

    [2] W. Jiang et al. 2,000,000 fps 2D and 3D imaging of periodic or reproducible scenes with single-pixel detectors. Photonics Res., 10, 2157-2164(2022).

    [3] S. Lv, Q. Kemao. Modeling the measurement precision of Fringe Projection Profilometry. Light Sci. Appl., 12, 257(2023).

    [4] S. S. Gorthi, P. Rastogi. Fringe projection techniques: whither we are?. Opt. Lasers Eng., 48, 133-140(2010).

    [5] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics, 3, 128-160(2011).

    [6] S. Zhang. High-speed 3D shape measurement with structured light methods: a review. Opt. Lasers Eng., 106, 119-131(2018).

    [7] J. Xu, S. Zhang. Status, challenges, and future perspectives of fringe projection profilometry. Opt. Lasers Eng., 135, 106193(2020).

    [8] L. Lu et al. Kinematic target surface sensing based on improved deep optical flow tracking. Opt. Express, 31, 39007-39019(2023).

    [9] S. Feng et al. Generalized framework for non-sinusoidal fringe analysis using deep learning. Photonics Res., 9, 1084-1098(2021).

    [10] S. Zhu et al. Superfast and large-depth-range sinusoidal fringe generation for multi-dimensional information sensing. Photonics Res., 10, 2590-2598(2022).

    [11] D. Moreno, F. Calakli, G. Taubin. Unsynchronized structured light. ACM Trans. Graphics, 34, 178(2015).

    [12] D. Bradley et al. Synchronization and rolling shutter compensation for consumer video camera arrays, 1-8(2009).

    [13] L. Lu et al. Motion induced error reduction methods for phase shifting profilometry: a review. Opt. Lasers Eng., 141, 106573(2021).

    [14] P. Zhang et al. High dynamic range 3D measurement based on structured light: a review. J. Adv. Manuf. Sci. Technol., 1, 2021004(2021).

    [15] S. Feng et al. Fringe pattern analysis using deep learning. Adv. Photonics, 1, 025001(2019).

    [16] T. Petković et al. Software synchronization of projector and camera for structured light 3D body scanning, 286-295(2016).

    [17] Y. Wang et al. Enhanced phase-coding method for three-dimensional shape measurement with half-period codeword. Appl. Opt., 58, 7359-7366(2019).

    [18] W. Yongchang et al. Period coded phase shifting strategy for real-time 3-D structured light illumination. IEEE Trans. Image Process., 20, 3001-3013(2011).

    [19] F. Paredes-Vallés et al. Fully neuromorphic vision and control for autonomous drone flight. Sci. Rob., 9, eadi0591(2024).

    [20] H. Fujiyoshi et al. Fast 3D position measurement with two unsynchronized cameras, 1239-1244(2003).

    [21] N. Hasler et al. Markerless motion capture with unsynchronized moving cameras, 224-231(2009).

    [22] C. E. Asmi, S. Roy. Fast unsynchronized unstructured light, 277-284(2018).

    [23] C. E. Asmi, S. Roy. Subpixel unsynchronized unstructured light, 865-875(2019).

    [24] D. P. Kingma, M. Welling. An introduction to variational autoencoders. Found. Trends Mach. Learn., 12, 307-392(2019).

    [25] A. Van Den Oord, N. Kalchbrenner, K. Kavukcuoglu. Pixel recurrent neural networks, 1747-1756(2016).

    [26] I. Goodfellow et al. Generative adversarial networks. Commun. ACM, 63, 139-144(2020).

    [27] O. Ronneberger, P. Fischer, T. Brox. U-net: convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci., 9351, 234-241(2015).

    [28] S. Ioffe, C. Szegedy. Batch normalization: accelerating deep network training by reducing internal covariate shift, 448-456(2015).

    [29] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks(2012).

    [30] K. He et al. Deep residual learning for image recognition, 770-778(2016).

    [31] Z. Wang, A. C. Bovik. Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag., 26, 98-117(2009).

    [32] Z. Wang et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13, 600-612(2004).

    [33] I. Loshchilov, F. Hutter. Decoupled weight decay regularization(2017).

    Lei Lu, Chenhao Bu, Zhilong Su, Banglei Guan, Qifeng Yu, Wei Pan, Qinghui Zhang, "Generative deep-learning-embedded asynchronous structured light for three-dimensional imaging," Adv. Photon. 6, 046004 (2024)
    Download Citation