• Laser & Optoelectronics Progress
  • Vol. 58, Issue 7, 0714003 (2021)
Hongyu Li1、2、**, Lianfeng Wei1, Zeming Wang1, Hui Chen2、*, Na Zheng1, Ran Zhang1, and Wei Wang1
Author Affiliations
  • 1Nuclear Power Institute of China, Chengdu , Sichuan 610213, China
  • 2School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu , Sichuan 610031, China
  • show less
    DOI: 10.3788/LOP202158.0714003 Cite this Article Set citation alerts
    Hongyu Li, Lianfeng Wei, Zeming Wang, Hui Chen, Na Zheng, Ran Zhang, Wei Wang. Thermal Fatigue Properties of Laser Cladding Fe-Based Coating[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0714003 Copy Citation Text show less
    Microstructures of Lc-Sr-31 powder
    Fig. 1. Microstructures of Lc-Sr-31 powder
    Schematic of coaxial powder feeding laser cladding process
    Fig. 2. Schematic of coaxial powder feeding laser cladding process
    Photo of thermal fatigue testing machine
    Fig. 3. Photo of thermal fatigue testing machine
    Shape and size of thermal fatigue specimen
    Fig. 4. Shape and size of thermal fatigue specimen
    Crack propagation pattern on the surface of cladding layer and sampling diagram. (a)Crack propagation pattern; (b) sampling diagram
    Fig. 5. Crack propagation pattern on the surface of cladding layer and sampling diagram. (a)Crack propagation pattern; (b) sampling diagram
    Thermal fatigue crack length test. (a) Schematic of sample crack length test; (b) software statistics of crack length
    Fig. 6. Thermal fatigue crack length test. (a) Schematic of sample crack length test; (b) software statistics of crack length
    Thermal fatigue crack propagation of matrix material
    Fig. 7. Thermal fatigue crack propagation of matrix material
    Crack morphologies in thermal fatigue process of matrix material. (a) 400 thermal cycles; (b) 500 thermal cycles; (c) 900 thermal cycles; (d) 1000 thermal cycles; (e) 1500 thermal cycles ; (f) 2000 thermal cycles
    Fig. 8. Crack morphologies in thermal fatigue process of matrix material. (a) 400 thermal cycles; (b) 500 thermal cycles; (c) 900 thermal cycles; (d) 1000 thermal cycles; (e) 1500 thermal cycles ; (f) 2000 thermal cycles
    Microstructure changes of matrix material after 2000 thermal cycles. (a) Original microstructure; (b) (c) microstructure and its partially enlarged view after 2000 thermal cycles
    Fig. 9. Microstructure changes of matrix material after 2000 thermal cycles. (a) Original microstructure; (b) (c) microstructure and its partially enlarged view after 2000 thermal cycles
    Relationship between the number of thermal cycles and crack length for matrix and cladding samples
    Fig. 10. Relationship between the number of thermal cycles and crack length for matrix and cladding samples
    Oxidation corrosion pit on the interface. (a) 80 thermal cycles; (b) 120 thermal cycles; (c) 160 thermal cycles
    Fig. 11. Oxidation corrosion pit on the interface. (a) 80 thermal cycles; (b) 120 thermal cycles; (c) 160 thermal cycles
    Transverse crack at the interface. (a) 500 thermal cycles; (b) 1000 thermal cycles
    Fig. 12. Transverse crack at the interface. (a) 500 thermal cycles; (b) 1000 thermal cycles
    Crack passivation. (a) 1500 thermal cycles;(b) 2000 thermal cycles
    Fig. 13. Crack passivation. (a) 1500 thermal cycles;(b) 2000 thermal cycles
    Effect of preheating temperature on thermal fatigue property of cladding layer
    Fig. 14. Effect of preheating temperature on thermal fatigue property of cladding layer
    Microstructures of cladding layer before heat treatment.(a) M7C3 hard phase at grain boundary; (b) M23C6 type intragranular carbide
    Fig. 15. Microstructures of cladding layer before heat treatment.(a) M7C3 hard phase at grain boundary; (b) M23C6 type intragranular carbide
    Position of energy spectrum analysis points of cladding layer before heat treatment
    Fig. 16. Position of energy spectrum analysis points of cladding layer before heat treatment
    Microstructures of cladding layer after heat treatment. (a) Zone 1; (b) zone 2
    Fig. 17. Microstructures of cladding layer after heat treatment. (a) Zone 1; (b) zone 2
    Position of energy spectrum analysis points of cladding layer after heat treatment
    Fig. 18. Position of energy spectrum analysis points of cladding layer after heat treatment
    Macro morphologies of heat-treated cladding samples during 2000 thermal cycles. (a)(b) 500 thermal cycles; (c)(d) 1000 thermal cycles; (e)(f) 1500 thermal cycles; (g)(h) 2000 thermal cycles
    Fig. 19. Macro morphologies of heat-treated cladding samples during 2000 thermal cycles. (a)(b) 500 thermal cycles; (c)(d) 1000 thermal cycles; (e)(f) 1500 thermal cycles; (g)(h) 2000 thermal cycles
    Morphologies of notch at the tip of heat-treated cladding sample after 2000 thermal cycles. (a) Whole view; (b) enlarged A zone; (c) enlarged B zone; (d) enlarged C zone
    Fig. 20. Morphologies of notch at the tip of heat-treated cladding sample after 2000 thermal cycles. (a) Whole view; (b) enlarged A zone; (c) enlarged B zone; (d) enlarged C zone
    Microstructures of heat-treated cladding sample before and after 2000 thermal cycles. (a) Before thermal cycles; (b) after 2000 thermal cycles
    Fig. 21. Microstructures of heat-treated cladding sample before and after 2000 thermal cycles. (a) Before thermal cycles; (b) after 2000 thermal cycles
    MaterialMass fraction /%
    CSiMnCrNiMoPSFe
    Base0.340.260.670.970.020.160.0110.004Bal.
    Lc-Sr-310.180.920.1116.81.831.950.0060.015Bal.
    Table 1. Chemical composition of matrix material and iron-based powder
    ZoneMass fraction of main elements /%
    SiMoCrMnFe
    Spot 10.382.7723.450.7268.37
    Spot 20.920.8613.830.5181.33
    Table 2. Mass fraction of elements in cladding layer before heat treatment
    ZoneMass fraction of main elements /%
    SiMoCrMnFe
    Spot 10.571.5322.720.9270.45
    Spot 20.681.1615.190.4280.03
    Table 3. Mass fraction of elements in cladding layer after heat treatment
    Hongyu Li, Lianfeng Wei, Zeming Wang, Hui Chen, Na Zheng, Ran Zhang, Wei Wang. Thermal Fatigue Properties of Laser Cladding Fe-Based Coating[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0714003
    Download Citation