[1] Shu Y X, Zhao L L, Jiang J H et al. Research progress of X-ray luminescence optical tomography[J]. Chinese Science Bulletin, 62, 3838-3850(2017).
[2] Pratx G, Carpenter C M, Sun C et al. X-ray luminescence computed tomography via selective excitation: a feasibility study[J]. IEEE Transactions on Medical Imaging, 29, 1992-1999(2010).
[3] Gao Y, Wang K, Jiang S X et al. Bioluminescence tomography based on Gaussian weighted Laplace prior regularization for in vivo morphological imaging of glioma[J]. IEEE Transactions on Medical Imaging, 36, 2343-2354(2017).
[4] Yu J J, Li Q Y, He X W. Multispectral bioluminescence tomography-based general iterative shrinkage and threshold algorithm[J]. Scientia Sinica, 49, 726-738(2019).
[5] He X L, Yu J J, Wang X D et al. Half thresholding pursuit algorithm for fluorescence molecular tomography[J]. IEEE Transactions on Biomedical Engineering, 66, 1468-1476(2019).
[6] Liu X, Liao Q M, Wang H K. Fast X-ray luminescence computed tomography imaging[J]. IEEE Transactions on Biomedical Engineering, 61, 1621-1627(2014).
[7] Chen R Z, Wang L, Chen X L et al. Single PMT fluorescence molecular tomography based on frequency modulation and spatial coding[J]. Chinese Journal of Lasers, 47, 0107001(2020).
[8] Zhang H B, Geng G H, Zhao Y C et al. Nonconvex L1-2 regularization for fast cone-beam X-ray luminescence computed tomography[J]. Acta Optica Sinica, 37, 0617001(2017).
[9] Li C Q, Martinez-Davalos A, Cherry S R. Numerical simulation of X-ray luminescence optical tomography for small-animal imaging[J]. Journal of Biomedical Optics, 19, 046002(2014).
[10] Zhang G L, Liu F, Liu J et al. Cone beam X-ray luminescence computed tomography based on Bayesian method[J]. IEEE Transactions on Medical Imaging, 36, 225-235(2017).
[11] Qu X. Research on region extraction and fast Bayesian matching pursuit for X-ray luminescence computed tomography[D]. Xi’an: Northwest University, 21-49(2018).
[12] Chen D M. The study of X-ray luminescence tomography imaging[D]. Xi’an: Xidian University, 27-69(2015).
[13] Chen D M, Zhu S P, Yi H J et al. Cone beam X-ray luminescence computed tomography: a feasibility study[J]. Medical Physics, 40, 031111(2013).
[14] Liu T S, Rong J Y, Gao P et al. Regularized reconstruction based on joint L1 and total variation for sparse-view cone-beam X-ray luminescence computed tomography[J]. Biomedical Optics Express, 10, 1-17(2019).
[15] Liu X, Wang H K, Xu M T et al. A wavelet-based single-view reconstruction approach for cone beam X-ray luminescence tomography imaging[J]. Biomedical Optics Express, 5, 3848-3858(2014).
[16] Pu H S, Gao P, Rong J Y et al. Spectral-resolved cone-beam X-ray luminescence computed tomography with principle component analysis[J]. Biomedical Optics Express, 9, 2844-2858(2018).
[17] Gao P, Cheng K, Schüler E et al. Restarted primal-dual Newton conjugate gradient method for enhanced spatial resolution of reconstructed cone-beam X-ray luminescence computed tomography images[J]. Physics in Medicine and Biology, 65, 135008(2020).
[18] Gao P, Rong J Y, Pu H S et al. Sparse view cone beam X-ray luminescence tomography based on truncated singular value decomposition[J]. Optics Express, 26, 23233-23250(2018).
[19] Liu J, Kang Y Q, Gu Y B et al. Low dose computed tomography image reconstruction based on sparse tensor constraint[J]. Acta Optica Sinica, 39, 0811004(2019).
[20] Hielscher A H, Klose A D, Scheel A K et al. Sagittal laser optical tomography for imaging of rheumatoid finger joints[J]. Physics in Medicine and Biology, 49, 1147-1163(2004).
[21] Feng J C, Qin C H, Jia K B et al. Bioluminescence tomography imaging in vivo: recent advances[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1394-1402(2012).
[22] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).
[23] Candès E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted ℓ1 minimization[J]. Journal of Fourier Analysis and Applications, 14, 877-905(2008).
[24] Figueiredo M A T, Bioucas-Dias J M. Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization[C]//2009 IEEE/SP 15th Workshop on Statistical Signal Processing, August 31-September 3, 2009, Cardiff, UK., 733-736(2009).
[25] Wright S J, Nowak R D. Figueiredo M A T. Sparse reconstruction by separable approximation[J]. IEEE Transactions on Signal Processing, 57, 2479-2493(2009).
[26] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2, 183-202(2009).
[27] He X W, Jin C, Yi H J et al. X-ray luminescence tomography based on segmentation augmented Lagrangian contraction[J]. Acta Optica Sinica, 36, 0317001(2016).
[28] Afonso M V. Bioucas-Dias J M, Figueiredo M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 19, 2345-2356(2010).
[29] Nocedal J, Wright S J. Numerical optimization[M]. 2nd ed. New York: Springer(2006).
[30] Ghadimi E, Teixeira A, Shames I et al. Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems[J]. IEEE Transactions on Automatic Control, 60, 644-658(2015).
[31] Zhang Q T, Chen X L, Qu X C et al. Comparative studies of lp-regularization-based reconstruction algorithms for bioluminescence tomography[J]. Biomedical Optics Express, 3, 2916-2936(2012).
[32] Zhao L, Yang H, Cong W et al. Lp regularization for early gate fluorescence molecular tomography[J]. Optics Letters, 39, 4156-4159(2014).
[33] Dogdas B, Stout D, Chatziioannou A F et al. Digimouse: a 3D whole body mouse atlas from CT and cryosection data[J]. Physics in Medicine and Biology, 52, 577-587(2007).
[34] Goldstein T, Osher S. The split Bregman method for L1-regularized problems[J]. SIAM Journal on Imaging Sciences, 2, 323-343(2009).
[35] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 1, 586-597(2007).
[36] Needell D, Tropp J A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 26, 301-321(2009).
[37] Pati YC, RezaiifarR, Krishnaprasad PS. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]//Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, November 1-3, 1993, Pacific Grove, CA, USA. New York: IEEE Press, 1993: 40- 44.
[38] Darne C, Lu Y J. Sevick-Muraca E M. Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update[J]. Physics in Medicine and Biology, 59, R1-R64(2014).
[39] Hansen P C. O’Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems[J]. SIAM Journal on Scientific Computing, 14, 1487-1503(1993).