• Laser & Optoelectronics Progress
  • Vol. 54, Issue 8, 81402 (2017)
Peng Yu1、*, Shi Qingping2, Huo Hu1, and Li Wei3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop54.081402 Cite this Article Set citation alerts
    Peng Yu, Shi Qingping, Huo Hu, Li Wei. Realization of Narrow Linewidth Property Based on Ultra-Stable Cavity in Precision Optics Teaching[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81402 Copy Citation Text show less
    References

    [1] Liu K, Littman M G. Novel geometry for single-mode scanning of tunable lasers[J]. Optics Letters, 1981, 6(3): 117-118.

    [2] Dringshoff K, Ernsting I, Rinkleff R H, et al. Low-noise, tunable diode laser for ultra-high-resolution spectroscopy[J]. Optics Letters, 2007, 32(19): 2876-2878.

    [3] Dahmani B, Hollberg L, Drullinger R. Frequency stabilization of semiconductor lasers by resonant optical feedback[J]. Optics Letters, 1987, 12(11): 876-878.

    [4] He Y, Orr B J. Robust tunable single-frequency operation of a diode laser by a self-pumped phase conjugate reflector and a high-finesse filter[J]. Optics Letters, 2008, 33(20): 2368-2370.

    [5] Ludlow A D, Zelevinsky T, Campbell G K, et al. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock[J]. Science, 2008, 319(5871): 1805-1808.

    [6] Teufel J D, Donner T, Li D, et al. Sideband cooling of micromechanical motion to the quantum ground state[J]. Nature, 2011, 475(7356): 359-363.

    [7] Cagnoli G, Gammaitoni L, Hough J, et al. Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors[J]. Physical Review Letters, 2000, 85(12): 2442-2445.

    [8] Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10-16-level laser stabilization[J]. Nature Photonics, 2011, 5(3): 158-161.

    [9] Young B C, Cruz F C, Itano W M, et al. Visible lasers with subhertz linewidths[J]. Physical Review Letters, 1999, 82(19): 3799-3802.

    [10] Bohnet J G, Chen Z L, Weiner J M, et al. A steady-state superradiant laser with less than one intracavity photon[J]. Nature, 2012, 484(7392): 78-81.

    [11] Jen H H. Superradiant laser: Effect of long-ranged dipole-dipole interaction[J]. Physical Review A, 2016, 94(5): 053813.

    [12] Norcia M A, Winchester M N, Cline J R K, et al. Superradiance on the millihertz linewidth strontium clock transition[J]. Science Advances, 2016, 2(10): e1601231.

    [13] Bohnet J G, Chen Z L, Weiner J M, et al. Linear-response theory for superradiant lasers[J]. Physical Review A, 2014, 89(1): 013806.

    [14] Norcia M A, Thompson J K. Cold-strontium laser in the superradiant crossover regime[J]. Physical Review X, 2016, 6(1): 011025.

    [15] Jahnke F, Gies C, Abmann M, et al. Giant photon bunching, superradiant pulse emission and excitation trapping in quantum-dot nanolasers[J]. Nature Communications, 2016, 7: 11540.

    [16] Peng Yu, Liu Pengfei, Li Wei. Bad-cavity Raman laser based on lattice-trapped cesium atoms[J]. Laser & Optoelectronics Progress, 2016, 53(4): 041402.

    [17] Peng Yu, Liu Pengfei, Li Wei. Spin-spin correlation of a bad-cavity Raman laser based on caesium atoms[J]. Laser & Optoelectronics Progress, 2016, 53(2): 021401.

    [18] Peng Yu. Simulating the three-dimensional image of cold atomic cloud[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 4130-4134.

    Peng Yu, Shi Qingping, Huo Hu, Li Wei. Realization of Narrow Linewidth Property Based on Ultra-Stable Cavity in Precision Optics Teaching[J]. Laser & Optoelectronics Progress, 2017, 54(8): 81402
    Download Citation