• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20210819 (2021)
Shuai Sun1、2, Longkun Du1、2, Dong Li1、2, Yuegang Li1、2, Huizu Lin1、2, and Weitao Liu1、2、*
Author Affiliations
  • 1College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China
  • 2Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20210819 Cite this Article
    Shuai Sun, Longkun Du, Dong Li, Yuegang Li, Huizu Lin, Weitao Liu. Progress and prospect of ghost imaging in extremely weak light (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210819 Copy Citation Text show less
    References

    [1] J W Lichtman, J A Conchello. Fluorescence microscopy. Nature Methods, 2, 910-919(2005).

    [2] J P Gardner, J C Mather, M Clampin, et al. The james webb space telescope. Space Science Reviews, 123, 485-606(2006).

    [3] M Kobayashi, D Kikuchi, H Okamura. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS One, 4, e6256(2009).

    [4] W Cao, R Che, D Ye. An illumination-independent edge detection and fuzzy enhancement algorithm based on wavelet transform for non-uniform weak illumination images. Pattern Recognition Letters, 29, 192-199(2008).

    [5] S Yeom, B Javidi, E Watson. Photon counting passive 3 D image sensing for automatic target recognition. Optics Express, 13, 9310-9330(2005).

    [6] S D Johnson, P A Moreau, T Gregory, et al. How many photons does it take to form an image?. Applied Physics Letters, 116, 260504(2020).

    [7] L You, X Yang, Y He, et al. Jitter analysis of a superconducting nanowire single photon detector. Aip Advances, 3, 072135(2013).

    [8] L You. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics, 9, 2673-2692(2020).

    [9] Hui Zhou, Chengjun Zhang, Chaolin Lü, et al. Recent progress of imaging applications based on superconducting nanowire single-photon detectors. Laser & Optoelectronics Progress, 58, 1011005(2021).

    [10] Lingdong Kong, Qingyuan Zhao, Xuecou Tu, et al. Progress and applications of superconducting nanowire delay-line single-photon imagers. Laser & Optoelectronics Progress, 58, 1011002(2021).

    [11] R J Sciamanda. Dirac and photon interference. American Journal of Physics, 37, 1128-1130(1969).

    [12] A Kirmani, D Venkatraman, D Shin, et al. First-photon imaging. Science, 343, 58-61(2014).

    [13] Zhengping Li, Juntian Ye, Huang Xin, et al. Single-photon imaging over 200 km. Optica, 8, 344-349(2021).

    [14] P A Morris, R S Aspden, J E C Bell, et al. Imaging with a small number of photons. Nature Communications, 6, 5913(2015).

    [15] R S Aspden, D S Tasca, R W Boyd, et al. EPR-based ghost imaging using a single-photon-sensitive camera. New Journal of Physics, 15, 073032(2013).

    [16] Y Zhu, J H Shi, X Y Wu, et al. Photon-limited non-imaging object detection and classification based on single-pixel imaging system. Appl Phys B, 126, 21(2020).

    [17] S Ma, C Y Hu, C L Wang, . et al. Multi-scale ghost imaging LiDAR via sparsity constraints using push-broom scanning. Opt Communication, 448, 89-92(2019).

    [18] M L Chen, E R Li, S S Han. Application of multi-correlation-scale measurement matrices in ghost imaging via sparsity constraints. App Opt, 53, 13(2014).

    [19] M Aβmann, M Bayer. Compressive adaptive computational ghost imaging. Scientific Reports, 3, 1545(2013).

    [20] W K Yu, M F Li, X R Yao, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Optics Express, 22, 7133-7144(2014).

    [21] J H Gu, S Sun, Y K Xu, et al. Feedback ghost imaging by gradually distinguishing and concentrating onto the edge area. Chin Opt Lett, 19, 0411(2021).

    [22] S Sun, W T Liu, H Z Lin, et al. Multi-scale adaptive computational ghost imaging. Scientific Reports, 6, 37013(2016).

    [23] S Sun, H Z Lin, Y K Xu, et al. Tracking and imaging of moving objects with temporal intensity difference correlation. Optics Express, 27, 27851-27861(2019).

    [24] Y K Xu, W T Liu, E F Zhang, et al. Is ghost imaging intrinsically more powerful against scattering?. Opti Express, 23, 32993-33000(2015).

    [25] Yongbo Wu, Zhihui Yang, Zhilie Tang. Experimental study on anti-disturbance ability of underwater ghost imaging. Laser & Optoelectronics Progress, 58, 0611002(2021).

    [26] Weitao Liu, Shuai Sun, Hongkang Hu, et al. Progress and prospect for ghost imaging of moving objects. Laser & Optoelectronics Progress, 58, 1011001(2021).

    [27] Wenlin Gong, Jianfeng Sun, Chenjin Deng, et al. Research progress on single-pixel imaging lidar via coherent detection. Laser & Optoelectronics Progress, 58, 1011003(2021).

    [28] Xiquan Fu, Xianwei Huang, Wei Tan, et al. Correlation imaging research under disturbance of channel airflow. Laser & Optoelectronics Progress, 58, 1011017(2021).

    [29] Goodman, Joseph W. Statistical Optics[M]. New Yk: John Wiley & Sons, 2015.

    [30] A Gatti, M Bache, D Magatti, et al. Coherent imaging with pseudo-thermal incoherent light. Journal of Modern Optics, 53, 739-760(2006).

    [31] J H Shapiro. Computational ghost imaging. Physical Review A, 78, 061802(2008).

    [32] N D Hardy, J H Shapiro. Computational ghost imaging versus imaging laser radar for three-dimensional imaging. Physical Review A, 87, 023820(2013).

    [33] X F Liu, X H Chen, X R Yao, et al. Lensless ghost imaging with sunlight. Opt Lett, 39, 2314-2317(2014).

    [34] W Gong, C Zhao, H Yu, et al. Three-dimensional ghost imaging lidar via sparsity constraint. Scientific Reports, 6, 26133(2016).

    [35] W Gong, S Han. Correlated imaging in scattering media. Optics Letters, 36, 394-396(2011).

    [36] Shih Y. Classical, Semiclassical Quantum Noise[M].Berlin: Springs, 2012: 169222.

    [37] Y Shih. The physics of ghost imaging: nonlocal interference or local intensity fluctuation correlation?. Quantum Information Processing, 11, 995-1001(2012).

    [38] Y Shih. The physics of turbulence-free ghost imaging. Technologies, 4, 39(2016).

    [39] Klyshko D N. Photon Nonlinear Optics [M]. New Yk: Gdon Breach Science Press, 1988.

    [40] N Bornman, M Agnew, F Zhu, et al. Ghost imaging using entanglement-swapped photons. Quantum Information, 5, 1-6(2019).

    [41] P Zerom, K W C Chan, J C Howell, et al. Entangled-photon compressive ghost imaging. Physical Review A, 84, 061804(2011).

    [42] J Li, W Gao, J Qian, et al. Robust entangled-photon ghost imaging with compressive sensing. Sensors, 19, 192(2019).

    [43] P B Dixon, G A Howland, K W C Chan, et al. Quantum ghost imaging through turbulence. Physical Review A, 83, 051803(2011).

    [44] A Schori, S Shwartz. X-ray ghost imaging with a laboratory source. Optics Express, 25, 14822-14828(2017).

    [45] A X Zhang, Y H He, L A Wu, et al. Tabletop x-ray ghost imaging with ultra-low radiation. Optica, 5, 374-377(2018).

    [46] Chenjin Deng, Wenlin Gong, Shensheng Han. Pulse-compression ghost imaging lidar via coherent detection.. Optics Express, 24, 25983-25994(2016).

    [47] Chenjin Deng, Long Pan, Chenglong Wang, et al. Performance analysis of ghost imaging lidar in background light environment. Photonics Research, 431-435(2017).

    [48] Long Pan, Chenjin Deng, Zunwang Bo, et al. Experimental investigation of chirped amplitude modulation heterodyne ghost imaging.. Optics Express, 28, 20808-20816(2020).

    [49] Dong Li, Ding Yang, Shuai Sun, et al. Enhancing robustness of ghost imaging against environment noise via cross-correlation in time domain.. Optics Express, 29, 31068-31077(2021).

    [50] Ying Yang, Jianhong Shi, Fei Cao, . et al. Computational imaging based on time-correlated single-photon-counting technique at low light level. Applied Optics, 54, 009277(2015).

    [51] Y Liu, J Shi, G Zeng. Single-photon-counting polarization ghost imaging. Applied Optics, 55, 10347(2016).

    [52] X Liu, J Shi, X Wu, et al. Fast first-photon ghost imaging. Scientific Reports, 8, 5012(2018).

    [53] X Liu, J Shi, L Sun, et al. Photon-limited single-pixel imaging. Optics Express, 28, 8132(2020).

    [54] T B Pittman, Y H Shih, D V Strekalov, et al. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429(1995).

    [55] R S Aspden, P A Morris, R He, et al. Heralded phase-contrast imaging using an orbital angular momentum phase-filter. Journal of Optics, 18, 055204(2016).

    [56] D S Tasca, R S Aspden, P A Morris, et al. The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera. Optics Express, 21, 30460-30473(2013).

    [57] Shikai Liu, Zhiyuan Zhou, Baosen Shi. Progress on optical image edge detection. Laser & Optoelectronics Progress, 58, 1011014(2021).

    [58] G Brida, M Genovese, I R Berchera. Experimental realization of sub-shot-noise quantum imaging. Nature Photonics, 4, 227(2010).

    [59] M Genovese. Real applications of quantum imaging. Journal of Optics, 18, 073002(2016).

    [60] N Samantaray, I Ruo-Berchera, A Meda, et al. Realization of the first sub-shot-noise wide field microscope. Light: Science & Applications, 6, e17005(2017).

    [61] Alejandra Valencia, Giuliano Scarcelli, Milena D'Angelo, et al. Two-photon imaging with thermal light.. Physical Review Letters, 94, 063601(2005).

    [62] Dongyue Yang, Guohua Wu, Junhui Li, et al. Image recovery of ghost imaging with sparse spatial frequencies. Optics Letters, 45, 403288(2020).

    [63] Shuai Sun, Weitao Liu, Junhao Gu, et al. Ghost imaging normalized by second-order coherence.. Optics Letters, 44, 5993-5996(2019).

    [64] Fei Wang, Hao Wang, Haichao Wang, et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging.. Optics Express, 27, 25560-25572(2019).

    [65] Hongkang Hu, Shuai Sun, Huizu Lin, et al. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects.. Optics Express, 28, 37284-37293(2020).

    [66] Y C He, G Wang, G X. . Dong et al. Ghost imaging based on deep learning. Sci Rep, 8, 6469(2018).

    [67] F Wang, H Wang, H C Wang, . et al. Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging. Opt Express, 27, 25560-25572(2019).

    [68] S Rizvi, J Cao, K Y Zhang, et al. DeepGhost: real-time computational ghost imaging via deep learning. Sci Rep, 10, 1140(2020).

    [69] Y Yang, J Shi, F Cao, . et al. Computational imaging based on time-correlated single-photon-counting technique at low light level. Applied Optics, 54, 9277-9283(2015).

    [70] H C Liu, H Yang, J Xiong, et al. Positive and negative ghost imaging. Physical Review Applied, 12, 034019(2019).

    [71] G L Li, Y Zhao, Z H Yang, et al. Positive–negative corresponding normalized ghost imaging based on an adaptive threshold. Laser Physics Letters, 13, 115202(2016).

    [72] H Yang, S Wu, H B Wang, et al. Probability theory in conditional-averaging ghost imaging with thermal light. Physical Review A, 98, 053853(2018).

    [73] D Z Cao, S H Zhang, Y Zhao, . et al. Zero-photon imaging under extremely low-light illumination. arXiv preprint, 2108, 01037(2021).

    CLP Journals

    [1] LIN Huizu, LIU Weitao, SUN Shuai, DU Longkun, CHANG Chen, LI Yuegang. Progress of ghost imaging algorithms[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863

    Shuai Sun, Longkun Du, Dong Li, Yuegang Li, Huizu Lin, Weitao Liu. Progress and prospect of ghost imaging in extremely weak light (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20210819
    Download Citation