• Journal of Inorganic Materials
  • Vol. 38, Issue 8, 893 (2023)
Jiashun FAN1, Donglin XIA2,*, and Baoshun LIU2
Author Affiliations
  • 11. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • 22. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.15541/jim20230008 Cite this Article
    Jiashun FAN, Donglin XIA, Baoshun LIU. Temperature Dependent Transient Photoconductive Response of CsPbBr3 NCs [J]. Journal of Inorganic Materials, 2023, 38(8): 893 Copy Citation Text show less
    References

    [1] L M HERZ. Charge-carrier dynamics in organic-inorganic metal halide perovskites. Annual Review of Physical Chemistry, 65(2016).

    [2] J S MANSER, P V KAMAT. Band filling with free charge carriers in organometal halide perovskites. Nature Photonics, 737(2014).

    [3] C WEHRENFENNIG, G E EPERON, M B JOHNSTON et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 1584(2014).

    [4] D SHI, V ADINOLFI, R COMIN et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 519(2015).

    [5] Z GUO, J S MANSER, Y WAN et al. Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy. Nature Communications, 7471(2015).

    [6] S LIU, L WANG, W C LIN et al. Imaging the long transport lengths of photo-generated carriers in oriented perovskite films. Nano Letters, 7925(2016).

    [7] N WANG, L CHENG, R GE et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 699(2016).

    [8] Z K TAN, R S MOGHADDAM, M L LAI et al. Bright light- emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 687(2014).

    [9] G XING, N MATHEWS, S S LIM et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 476(2014).

    [10] X HU, X ZHANG, L LIANG et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 7373(2014).

    [11] Q HU, H WU, J SUN et al. Large-area perovskite nanowire arrays fabricated by large-scale roll-to-roll micro-gravure printing and doctor blading. Nanoscale, 5350(2016).

    [12] W HU, W HUANG, S YANG et al. High-performance flexible photodetectors based on high-quality perovskite thin films by a vapor-solution method. Advanced Materials(2017).

    [13] U THUMU, M PIOTROWSKI, B OWENS-BAIRD et al. Zero- dimensional cesium lead halide perovskites: phase transformations, hybrid structures, and applications. Journal of Solid State Chemistry, 361(2019).

    [14] Y A DARMAWAN, M YAMAUCHI, S MASUO. In situ observation of a photodegradation-induced blueshift in perovskite nanocrystals using single-particle spectroscopy combined with atomic force microscopy. The Journal of Physical Chemistry C, 18770(2020).

    [15] X ZHANG, D ZHAO, X LIU et al. Ferroelastic domains enhanced the photoelectric response in a CsPbBr3 single-crystal film detector. The Journal of Physical Chemistry Letters, 8685(2021).

    [16] G KAUR, K J BABU, H N GHOSH. Temperature-dependent interplay of polaron formation and hot carrier cooling dynamics in CsPbBr3 nanocrystals: role of carrier-phonon coupling strength. The Journal of Physical Chemistry Letters, 6206(2020).

    [17] C EAMES, J M FROST, P R F BARNES et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications, 7497(2015).

    [18] A MIYATA, A MITIOGLU, P PLOCHOCKA et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics, 582(2015).

    [19] J A CHRISTIANS, J S MANSER, P V KAMAT. Multifaceted excited state of CH3NH3PbI3. Charge separation, recombination, and trapping. The Journal of Physical Chemistry Letters, 2086(2015).

    [20] Y YANG, M YANG, Z LI et al. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: influence of exciton binding energy. The Journal of Physical Chemistry Letters, 4688(2015).

    [21] P PIATKOWSKI, B COHEN, C S PONSECA et al. Unraveling charge carriers generation, diffusion, and recombination in formamidinium lead triiodide perovskite polycrystalline thin film. The Journal of Physical Chemistry Letters, 204(2016).

    [22] G KAUR, H N GHOSH. Hot carrier relaxation in CsPbBr3-based perovskites: a polaron perspective. The Journal of Physical Chemistry Letters, 8765(2020).

    [23] R L Z HOYE, R E BRANDT, A OSHEROV et al. Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chemistry - A European Journal, 2605(2016).

    [24] J PAL, S MANNA, A MONDAL et al. Colloidal synthesis and photophysics of M3Sb2I9 (M=Cs and Rb) nanocrystals: lead-free perovskites. Angewandte Chemie International Edition, 14187(2017).

    [25] M ABULIKEMU, S OULD-CHIKH, X MIAO et al. Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9. Journal of Materials Chemistry A, 12504(2016).

    [26] F UMAR, J ZHANG, Z JIN et al. Dimensionality controlling of Cs3Sb2I9 for efficient all-inorganic planar thin film solar cells by HCl-assisted solution method. Advanced Optical Materials(2019).

    [27] R A AWNI, Z SONG, C CHEN et al. Influence of charge transport layers on capacitance measured in halide perovskite solar cells. Joule, 644(2020).

    [28] O ALMORA, M GARCÍA-BATLLE, G GARCIA-BELMONTE. Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites. The Journal of Physical Chemistry Letters, 3661(2019).

    [29] V PECUNIA, J ZHAO, C KIM et al. Assessing the impact of defects on lead-free perovskite-inspired photovoltaics via photoinduced current transient spectroscopy. Advanced Energy Materials(2021).

    [30] P R F BARNES, K MIETTUNEN, X LI et al. Interpretation of optoelectronic transient and charge extraction measurements in dye-sensitized solar cells. Advanced Materials, 1881(2013).

    [31] S SETH, A SAMANTA. A facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition. Scientific Reports, 37693(2016).

    [32] G GORDILLO, C A OTÁLORA, A A RAMIREZ. A study of trap and recombination centers in MAPbI3 perovskites. Physical Chemistry Chemical Physics, 32862(2016).

    [33] J LI, X YUAN, P JING et al. Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films. RSC Advances, 78311(2016).

    [34] M LIAO, B SHAN, M LI. In situ Raman spectroscopic studies of thermal stability of all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals. The Journal of Physical Chemistry Letters, 1217(2019).

    [35] P B MIRANDA, A J HEEGER, D MOSES. Ultrafast photogeneration of charged polarons in conjugated polymers. Physical Review B, 1201(2001).

    [36] G R YETTAPU, D TALUKDAR, S SARKAR et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Letters, 4838(2016).

    [37] X LI, Y WU, S ZHANG et al. Quantum dots: CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light- emitting diodes. Advanced Functional Materials, 2584(2016).

    [38] C C STOUMPOS, C D MALLIAKAS, J A PETERS et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design, 2722(2013).

    [39] W DU, S ZHANG, Z WU et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 3145(2019).

    [40] Y YAMADA, T NAKAMURA, M ENDO et al. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. Journal of the American Chemical Society, 11610(2014).

    Jiashun FAN, Donglin XIA, Baoshun LIU. Temperature Dependent Transient Photoconductive Response of CsPbBr3 NCs [J]. Journal of Inorganic Materials, 2023, 38(8): 893
    Download Citation