• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 4, 430 (2020)
Yong BO1、*, Qi BIAN1, Qinjun PENG1, Zuyan XU1, Kai WEI2, Yudong ZHANG2, Lu FENG3, and Suijian XUE3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2020.04.005 Cite this Article
    BO Yong, BIAN Qi, PENG Qinjun, XU Zuyan, WEI Kai, ZHANG Yudong, FENG Lu, XUE Suijian. Development of sodium beacon laser[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 430 Copy Citation Text show less
    References

    [1] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.

    [2] Hardy J W. Active optics: A new technology for the control of light[C]. Proceedings of the IEEE, 1978, 6(6): 651-697.

    [3] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe[J]. Astronomy and Astrophysics, 1985, 152: L29-L31.

    [4] Primmerman C A, Murphy D V, Page D A, et al. Compensation of atmospheric optical distortion using a synthetic beacon[J]. Nature, 1991, 353 (6340): 141-143.

    [5] Fugate R Q, Fried D L, Ameer G A, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star[J]. Nature, 1991, 353 (6340): 144-146.

    [6] Thompson L A, Gardner C S. Experiments on laser guidestars at Mauna Kea Observatory for adaptive imaging in astronomy[J]. Nature, 1987, 328: 229-231.

    [7] Humphreys R A, Primmerman C A, Bradley L C, et al. Atmospheric-turbulence measurements using a synthetic beacon in the mesospheric sodium layer[J]. Optics Letters, 1991, 1(18): 1367-1369.

    [8] Dekany R, Velur V, Petrie H, et al. Laser guide star adaptive optics on the 5.1 meter telescope at Palomar observatory[C]. AMOS Technical conference Proceedings, 2005.

    [9] Bonaccini D, Allaert E, Araujo C, et al. The VLT laser guide star facility[C]. Proceedings of SPIE, 2003, 105: 381-392.

    [10] MignantD L, Campbell R D, Bouchez A H, et al. LGS AO operations at the W. M. Keck Observatory[C]. Proceedings of SPIE, 2006, 6270: 6270C-1.

    [11] Ellerbroek B, Adkins S, Andersen D, et al. Progress towards developing the TMT adaptive optical systems and their components[C]. Proceedings of SPIE, 2008, 7015: 70150R/1-70150R/11.

    [12] Bian Q, Bo Y, Zuo J W, et al. Investigation of return photons from sodium laser beacon excited by a 40-watt facility-class pulsed laser for adaptive optical telescope applications[J]. Scientific Reports, 2018, 8 (9222): 1-10.

    [13] Milonni P W, Fearn H, Telle J M, et al. Theory of continuous wave excitation of the sodium beacon[J]. Journal of the Optical Society of America A, 1999, 1(10): 2555-2566.

    [14] Holzlohner R, Rochester S M, Calia D B, et al. Optimization of CW sodium laser guide star efficiency[J]. Astronomy and Astrophysics, 2009, 510 (4-6361): 1109-1115.

    [15] Fan T W, Zhou T H, Feng Y. Improving sodium laser guide star brightness by polarization switching[J]. Scientific Reports, 2016, (1): 19859.

    [16] Ge J, Jacobsen B P, Angel J R P, et al. Simultaneous measurements of sodium column density and laser guide star brightness[C]. Proceedings of SPIE, 1998, 3353: 242.

    [17] Jennifer E R, Antonin H B, John A, et al. Facilitizing the palomar AO laser guide star system[C]. Proceedings of SPIE, 2008, 7015: 70152S-1.

    [18] Jian G, Jacobsena B P, Angel J R P, et al. Simultaneous measurements of sodium column density and laser guide star brightness[C]. Proceedings of SPIE, 1998, 3353: 242.

    [19] Wang L Q, OtarolaA, Ellerbroek B. Impact of sodium laser guide star fratricide on multi-conjugate adaptive optics systems[J]. Journal of the Optical Society of America A, 2010, 27 (11): A19.

    [20] Rochester S M, Otarola A, Boyer C, et al. Modeling of pulsed laser guide stars for the thirty meter telescope project[J]. Journal of the Optical Society of America B, 2012, 29 (8): 2176.

    [21] Rampy R, Gavel D, Rochester S M, et al. Toward optimization of pulsed sodium laser guide stars[J]. Journal of the Optical Society of America B, 2015, 32 (12): 2425-2434.

    [22] Avicola K, Brase J M, Morris J R, et al. Sodium laser guide star system at Lawrence Livermore National Laboratory: System description and experimental results[C]. Proceedings of SPIE, 1994, 2201: 326-341.

    [23] Max C E, Gavel D T, Olivier S S, et al. Issues in the design and optimization of adaptive optics and laser guide stars for the Keck telescopes[C]. Proceedings of SPIE, 1994, 2201: 189.

    [24] Friedman H W, Erbert G V, Kuklo T C, et al. Sodium beacon laser system for the Lick Observatory[C]. Proceedings of SPIE, 1995, 2534: 150.

    [25] Quirrenbach A, Hackenberg W, Holstenberg H, et al. The sodium laser guide starsystem of ALFA[C]. Proceedings of SPIE, 1997, 3126: 35-43.

    [26] Rabien S, Davies R I, Hackenberg W K P, et al. Beam quality and polarization analysis of the ALFA laser at Calar Alto and the influence on brightness and size of the laser guide star[C]. Proceedings of SPIE, 1999, 3762: 368.

    [27] Butler D J, Davies R I, Fews H, et al. Calar Alto ALFA and the sodium laser guide star in astronomy[C]. Proceedings of SPIE, 1999, 3762: 184.

    [28] Davies R I, Ott T, Li J, et al. Operational issues for PARSEC, the VLT laser[C]. Proceedings of SPIE, 2003, 4839: 402.

    [29] Bonaccini D, Allaert E, Araujo C, et al. The VLT laser guide star facility[C]. Proceedings of SPIE, 2003, 4839: 381-392.

    [30] Rabien S, Davies R I, Ott T, et al. Test performance of the PARSEC laser system[C]. Proceedings of SPIE, 2004, 5490: 981.

    [31] Pennington D M, Dawson J W, Drobshoff A, et al. Compact fiber laser for 589 nm laser guide stars generation[C]. Conference on Lasers and Eletro-Optics Europe, 2005.

    [32] Dawson J W, Drobshoff A D, Beach R J, et al. Multi-watt 589 nm fiber laser source[C]. Proceedings of SPIE, 2006, 6102: 61021F.

    [33] Georgiev D, Gapontsev V P, Dronov A G , et al. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm[J]. Optics Express, 2005, 13 (18): 6772.

    [34] Dupriez P, Farrell C, Ibsen M, et al. 1 W average power at 589 nm from a frequency doubled pulsed Raman fiber MOPA system[C]. Lasers & Applications in Science & Engineering, International Society for Optics and Photonics, 2006, 6102: 61021G-1.

    [35] Olausson C B T, Shirakawa A, Maurayama H, et al. Power-scalable long-wavelength Yb-doped photonic bandgap fiber sources[C]. Proceedingsof SPIE, 2010, 7580 (6): 758013-1.

    [36] Surin A A, Larin S V. 14 W SHG in MgO:sPPLT at 589 nm from high power CW linearly polarized RFL[C]. International Conference Laser Optics, 2014.

    [37] Taylor L, Feng Y, Calia D B. High power narrowband 589 nm frequency doubled fibre laser source[J]. Optics Express, 2009, 17 (17): 14687-14693.

    [38] Feng Y, Taylor L R, Calia D B. 25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star[J]. Optics Express, 2009, 17 (21): 19021-19026.

    [39] Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 2010, 18 (8): 8540-8555.

    [40] Calia D B, Kaenders W. First light for ESO’s four laser guide star facility[J]. Optics and Photonics News, 2016, 27: 18.

    [41] Zhang L, Jiang H, Cui S, et al. Over 50 W 589 nm single frequency laser by frequency doubling of single Raman fiber amplifier[C]. CLEO: Science and Innovations, 2014.

    [42] Zhang L, Jiang H W, Cui S Z, et al. Versatile Raman fiber laser for sodium laser guide star[J]. Laser & Photonics Reviews, 2015, 8 (6): 889-895.

    [43] Yang X Z, Zhang L, Cui S Z, et al. Sodium guide star laser pulsed at Larmor frequency[J]. Optics Letters, 2017, 42 (21): 4351-4354.

    [44] Moosmuller H, Vance J D. Sum-frequency generation of continuous-wave sodium D2 resonance radiation[J]. Optics Letters, 1997, 22 (15): 1135-1137.

    [45] Vance J D, She C Y, Moosmüller H. Continuous-wave, all-solid-state, single-frequency 400 mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator[J]. Applied Optics, 1998, 37 (21): 4891-4896.

    [46] Bienfang J C, Denman C A, Grime B W, et al. 20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers[J]. Optics Letters, 2003, 28 (22): 2219.

    [47] Bienfang J C, Denman C A, Grime B W, et al. 20 watt CW all-solid-state 589 nm sodium beacon excitation source based on doubly resonant sum-frequency generation in LBO[C]. Proceedings of SPIE, 2004.

    [48] Denman C A, Hillman P D, Moore G T, et al. 20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications[J]. Optical Materials, 2004, 2(4): 507-513.

    [49] Denman C A, Moore G T, Drummond J D, et al. 50 W CW single frequency 589 nm FASOR[C]. Proceedings of SPIE, 2005.

    [50] Denman C A, Hillman P D, Moore G T, et al. Realization of a 50 watt facility-class sodium guidestar pump laser[C]. Solid State Lasers XIV: Technology and Devices, International Society for Optics and Photonics, 2005, 5707: 46.

    [51] Denman C A, Hillman P D, Moore G T. The starfire optical range sodium guidestar FASOR[C]. Proceedings of the 21st Annual Solid State and Diode Technology Review, 2008.

    [52] Saito N, Akagawa K, Hayano Y, et al. 589 nm generation by sum-frequency mixing of mode-locked 1064 nm and 1319 nm pulses in periodically poled KTP[C]. Conference on Lasers and Electro-Optics, 2004.

    [53] Hayano Y, Saito Y, Saito N, et al. Design of laser system for Subaru LGS AO[C]. Advancements in Adaptive Optics, International Society for Optics and Photonics, 2004.

    [54] Saito N, Akagawa K, Hayano Y, et al. Synchronization of 1064 and 1319 nm pulses emitted from actively mode-locked Nd:YAG lasers and its application to 589 nm sumfrequencygeneration[J]. Japanese Journal of Applied Physics, Part 2, 2005, 44: L1484-L1487.

    [55] Saito N, Akagawa K, Hayano Y, et al. 1 W 589 nm coherent light-source achieved by quasi-intracavity sum-frequency generation[C]. Proceedings of SPIE, 2005, 98: 457-461.

    [56] Saito Y, Hayano Y, Saito N, et al. 589 nm sum-frequency generation laser for the LGS/AO of Subaru Telescope[C]. Proceedings of SPIE, 2006.

    [57] Saito N, Akagawa K, Kato M, et al. Development of all-solid-state coherent 589 nm light source: Toward the realization of sodium lidar and laser guide star adaptive optics[C]. Proceedings of SPIE, 2006, 6409: 64091H-1.

    [58] Saito N, Akagawa K, Ito M, et al. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers[J]. Optics Letters, 2007, 32(14): 1965.

    [59] Takami H, Colley S, Dinkins M, et al. Status of Subaru laser guide star AO system[C]. Proceedings of SPIE, 2006, 6272: 62720C1.

    [60] Hankla A K, Bartholomew J, Groff K, et al. 20 W and 50 W solid-state sodium beacon guidestar laser systems for the Keck I and Gemini South Telescopes[C]. Proceedings of SPIE, 2006, 6272: 62721G1.

    [61] Lee I, Jalali M, Vanasse N, et al. 20 W and 50 W guidestar laser system update for the Keck I and Gemini South telescopes[C]. Proceedings of SPIE, 2008, 7015: 70150N1.

    [62] Sawruk N, Lee I, Jalali M, et al. System overview of 30 W and 55 W sodium guide star laser systems[C]. Proceedings of SPIE, 2010, 7736: 77361Y1.

    [63] d’Orgeville C, Diggs S, Fesquet V, et al. Gemini South multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky performance results[C]. Proceedings of SPIE, 2012, 8447: 84471Q-1.

    [64] Jeys T H. Development of amesospheric sodium laser beacon for atmospheric adaptive optics[J]. The Lincoln Laboratory Journal, 1991, 4 (2): 133-150.

    [65] Kibblewhite E J, Shi F, Bonaccini D, et al. Design and field tests of an 8 W sum-frequency laser for adaptive optics[C]. Proceedings of SPIE, 1998, 3353: 300-309.

    [66] Velur V, Kibblewhite E J, Dekany R G, et al. Implementation of the Chicago sum frequency laser at Palomar laser guide star test bed[C]. Proceedings of SPIE, 2004, 5490: 1033.

    [67] Roberts J E, Bouchez A H, Angione J, et al. Facilitizing the Palomar AO laser guide star system[C]. International Society for Optics and Photonics, 2008, 7015: 70152S-1.

    [68] Lu YF, Bo Y, Xie S Y, et al. An 8.1 W diode pumped solid-state quasi-continuous-wave yellow laser at 589 nm by intracavity sum-frequency mixing generation[J]. Optics Communications, 2008, 281: 5596.

    [69] Wang P Y, Xie S Y, Bo Y, et al. 33 W quasi-continuous-wave narrow-band sodium D2a laser by sum-frequency generation in LBO[J]. Chinese Physics B, 2014, 23(9): 094208.

    [70] Wei K, Bo Y, Xue X H, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[C]. Proceedings of SPIE, 2013, 8447: 84471R-1.

    [71] Bian Q, Bo Y, Zuo J W, et al. High-power QCW microsecond-pulse solid-state sodium beacon laser with spiking suppression and D2b re-pumping[J]. Optics Letters, 2016, 41(8): 1732-1735.

    [72] Lu Y H, Fan G B, Ren H J, et al. High-average-power narrow-line-width sum frequency generation 589 nm laser[C]. Proceedings of SPIE, 2015, 9650: 965008-1.

    [73] Lu Y H, Zhang L, Xu X F, et al. Tunable-line-width all-solid-state double-spectral-line sodium beacon laser[C]. Proceedings of SPIE, 2017, 10436: 1043605.

    [74] Gerster E, Hahn C, Lorch S, et al. Frequency-doubled GaAsSb/GaAs semiconductor disk laser emitting at 589 nm[C]. Conference Proceedings Laser 82 Electro Optics, 2003.

    [75] Fallahi M, Fan L, Kaneda Y, et al. 5 W yellow laser by intracavity frequency doubling of high-power vertical-external-cavity surface-emitting laser[J]. IEEE Photonics Technology Letters, 2008, 20 (20): 1700-1702.

    [76] Hessenius C, Lukowski M, Moloney J, et al. Tunable single-frequency yellow laser for sodium guidestar applications[C]. SPIE Newsroom, 2012.

    [77] Leinonen T, Hrknen A, Korpijrvi VM, et al. High-power narrow-linewidth optically pumped dilute nitride disk laser with emission at 589 nm[C]. Proceedings of SPIE, 2010, 7720 (2): 772016.

    [78] Kantola E, Leinonen T, Ranta S, et al. High-efficiency 20 W yellow VECSEL[J]. Optics Express, 2014, 22 (6): 6372-6380.

    BO Yong, BIAN Qi, PENG Qinjun, XU Zuyan, WEI Kai, ZHANG Yudong, FENG Lu, XUE Suijian. Development of sodium beacon laser[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 430
    Download Citation