• Laser & Optoelectronics Progress
  • Vol. 60, Issue 9, 0925001 (2023)
Jingzhao Zhang1, Xiaoqing Luo1、*, Xiaofeng Xu1, Youlin Luo1, Weihua Zhu1, Zhiyong Chen1, and Xinlin Wang1、2、**
Author Affiliations
  • 1Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Electrical Engineering, University of South China, Hengyang 421001, Hunan, China
  • 2School of Mechanical Engineering, University of South China, Hengyang 421001, Hunan, China
  • show less
    DOI: 10.3788/LOP220540 Cite this Article Set citation alerts
    Jingzhao Zhang, Xiaoqing Luo, Xiaofeng Xu, Youlin Luo, Weihua Zhu, Zhiyong Chen, Xinlin Wang. Multiple Fano Resonances and Optical Sensing Based on C3-Symmetry-Breaking[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0925001 Copy Citation Text show less
    References

    [1] Zhang X P, Ma X M, Dou F et al. A biosensor based on metallic photonic crystals for the detection of specific bioreactions[J]. Advanced Functional Materials, 21, 4219-4227(2011).

    [2] Kravets V G, Kabashin A V, Barnes W L et al. Plasmonic surface lattice resonances: a review of properties and applications[J]. Chemical Reviews, 118, 5912-5951(2018).

    [3] Liu L L, Li Z, Xu B Z et al. Fishbone-like high-efficiency low-pass plasmonic filter based on double-layered conformal surface plasmons[J]. Plasmonics, 12, 439-444(2017).

    [4] Gan C H, Gbur G. Spatial coherence conversion with surface plasmons using a three-slit interferometer[J]. Plasmonics, 3, 111-117(2008).

    [5] Arbabi A, Arbabi E, Horie Y et al. Planar metasurface retroreflector[J]. Nature Photonics, 11, 415-420(2017).

    [6] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011).

    [7] Shao L D, Zhu W R. Tri-band metasurface for multi-mode vector beam conversion[C](2020).

    [8] Guo J Y, Li W Y, Sun R et al. Generation of broadband terahertz vortex beam based on double-arrow metasurface[J]. Chinese Journal of Lasers, 48, 2014003(2021).

    [9] Mollaei M S M, Simovski C. Dual-metasurface superlens: a comprehensive study[J]. Physical Review B, 100, 205426(2019).

    [10] Butet J, Martin O J F. Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures[J]. Optics Express, 22, 29693-29707(2014).

    [11] Lim W X, Singh R. Universal behaviour of high-Q Fano resonances in metamaterials: terahertz to near-infrared regime[J]. Nano Convergence, 5, 5(2018).

    [12] Campione S, Guclu C, Ragan R et al. Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles[J]. ACS Photonics, 1, 254-260(2014).

    [13] Mork J, Chen Y, Heuck M. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation[J]. Physical Review Letters, 113, 163901(2014).

    [14] Yu Y, Xue W Q, Semenova E et al. Demonstration of a self-pulsing photonic crystal Fano laser[J]. Nature Photonics, 11, 81-84(2017).

    [15] Heuck M, Kristensen P T, Elesin Y et al. Improved switching using Fano resonances in photonic crystal structures[J]. Optics Letters, 38, 2466-2468(2013).

    [16] Yu Y, Heuck M, Hu H et al. Fano resonance control in a photonic crystal structure and its application to ultrafast switching[J]. Applied Physics Letters, 105, 061117(2014).

    [17] Nozaki K, Shinya A, Matsuo S et al. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities[J]. Optics Express, 21, 11877-11888(2013).

    [18] Shuai Y C, Zhao D Y, Singh Chadha A et al. Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement[J]. Applied Physics Letters, 103, 241106(2013).

    [19] Shuai Y C, Zhao D Y, Tian Z B et al. Double-layer Fano resonance photonic crystal filters[J]. Optics Express, 21, 24582-24589(2013).

    [20] Hu J H, Liu X H, Zhao J J et al. Investigation of Fano resonance in compound resonant waveguide gratings for optical sensing[J]. Chinese Optics Letters, 15, 030502(2017).

    [21] Chen Z, Cao X Y, Song X K et al. Side-coupled cavity-induced Fano resonance and its application in nanosensor[J]. Plasmonics, 11, 307-313(2016).

    [22] Ma J, Li J P, Wu X S et al. Sensing characteristics based on Fano resonance of photonic crystal slot nanobeam cavity[J]. Acta Optica Sinica, 41, 2413002(2021).

    [23] Ghodsi F, Dashti H, Ahmadi-Shokouh J. Design of a multilayer nano-antenna as a hyperbolic metamaterial with Fano response for optical sensing[J]. Optical and Quantum Electronics, 52, 316(2020).

    [24] Guo X D, Hu H, Zhu X et al. Higher order Fano graphene metamaterials for nanoscale optical sensing[J]. Nanoscale, 9, 14998-15004(2017).

    [25] Shen Z, Du M Y. High-performance refractive index sensing system based on multiple Fano resonances in polarization-insensitive metasurface with nanorings[J]. Optics Express, 29, 28287-28296(2021).

    [26] Farmani A, Mir A, Bazgir M et al. Highly sensitive nano-scale plasmonic biosensor utilizing Fano resonance metasurface in THz range: numerical study[J]. Physica E: Low-Dimensional Systems and Nanostructures, 104, 233-240(2018).

    [27] Ou J, Luo X Q, Luo Y L et al. Near-infrared dual-wavelength plasmonic switching and digital metasurface unveiled by plasmonic Fano resonance[J]. Nanophotonics, 10, 947-957(2020).

    [28] Zhang S P, Bao K, Halas N J et al. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed[J]. Nano Letters, 11, 1657-1663(2011).

    [29] Yi J J, Luo X Q, Ou J et al. Near- and mid-infrared plasmonic Fano resonances induced by different geometric configurations in subwavelength nanostructures[J]. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114345(2020).

    [30] Li S L, Wang Y L, Jiao R Z et al. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system[J]. Optics Express, 25, 3525-3533(2017).

    [31] Xu X F, Luo X Q, Zhang J Z et al. Near-infrared plasmonic sensing and digital metasurface via double Fano resonances[J]. Optics Express, 30, 5879-5895(2022).

    [32] Petschulat J, Cialla D, Janunts N et al. Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering[J]. Optics Express, 18, 4184-4197(2010).

    [33] Wang Y J, Sun C W, Li H Y et al. Self-reference plasmonic sensors based on double Fano resonances[J]. Nanoscale, 9, 11085-11092(2017).

    [34] Luo Y L, Luo X Q, Yi J J et al. Whispering-gallery mode resonance-assisted plasmonic sensing and switching in subwavelength nanostructures[J]. Journal of Materials Science, 56, 4716-4726(2021).

    [35] Chen W, Hu H T, Jiang W et al. Ultrasensitive nanosensors based on localized surface plasmon resonances: from theory to applications[J]. Chinese Physics B, 27, 107403(2018).

    Jingzhao Zhang, Xiaoqing Luo, Xiaofeng Xu, Youlin Luo, Weihua Zhu, Zhiyong Chen, Xinlin Wang. Multiple Fano Resonances and Optical Sensing Based on C3-Symmetry-Breaking[J]. Laser & Optoelectronics Progress, 2023, 60(9): 0925001
    Download Citation