• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 6, 653 (2018)
HUANG Shu-Shan1、2, YANG Cheng-Ao1、2, ZHANG Yu1、2、*, XIE Sheng-wen1、2, LIAO Yong-Ping1、2, CHAI Xiao-Li1、2, XU Ying-Qiang1、2, and NIU Zhi-Chuan1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.06.002 Cite this Article
    HUANG Shu-Shan, YANG Cheng-Ao, ZHANG Yu, XIE Sheng-wen, LIAO Yong-Ping, CHAI Xiao-Li, XU Ying-Qiang, NIU Zhi-Chuan. A simple approach to obtain 2.0 μm GaSb laser by using high-order distributed Bragg reflector[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 653 Copy Citation Text show less
    References

    [1] Liao Y P, Zhang Y, Yang C A, et al. High-power, high-efficient GaSb-based quantum well laser diodes emitting at 2 μm[J].J.Infrared Millim.Waves ,2016,35(6):672-675.

    [2] Scholle K, Fuhrberg P, Koopmann P, et al. 2 μm laser sources and their possible applications[M]. Rijeka: INTECH Open Access Publisher, 2010:437-441.

    [3] Xing J L, Zhang Y, Liao Y P, et al. Room-temperature operation of 2.4 μm InGaAsSb/AlGaAsSb quantum-well laser diodes with low-threshold current density[J]. Chin. Phys. Lett. , 2014, 31(5):054204.

    [4] Viheriala J, Haring K, Suomalainen S, et al. High spectral purity high-power GaSb-based DFB laser fabricated by nanoimprint lithography[J]. IEEE Photon. Technol. Lett. , 2016, 28(11):1233-1236.

    [5] Liao Y P, Zhang Y, Xing J L, et al. High power laser diodes of 2 μm AlGaAsSb/InGaSb type I quantum-wells[J]. J. Semicond. , 2015, 36(5):054007.

    [6] Haring K, Viheril J, Viljanen M R, et al. 2 μm InGaSb/GaSb laterally coupled distributed feedback laser fabricated by nanoimprint lithography[C]. In Society of Photo-Optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2010.

    [7] Vicet A, Yarekha D A, Pérona A, et al. Trace gas detection with antimonide-based quantum-well diode lasers[J]. Spectrochim.. Acta A , 2002, 58(11):2405-2412.

    [8] Chai X L, Zhang Y, Liao Y P, et al. High power GaSb-based 2.6 μm room-temperature laser diodes with InGaAsSb/AlGaAsSb type I quantum-wells[J].J.Infrared Millim.Waves, 2017, 36(3):257-260.

    [9] Xing J L, Zhang Y, Xu Y Q, et al. High quality above 3 μm mid-infrared InGaAsSb/AlGaInAsSb multiple-quantum well grown by molecular beam epitaxy[J]. Chin Phys B, 2014, 23(1): 017805.

    [10] Hosoda T, Wang M, Shterengas L, et al. Three stage cascade diode lasers generating 500 mW near 3.2 μm[J]. Appl. Phys. Lett., 2015, 107(11):121108-50.

    [11] Milde T, Assmann C, Jimenez A, et al. Single mode GaSb diode lasers for sensor applications in a long wavelength regime[J]. Appl Opt, 2017, 56(31):H45.

    [12] Apiratikul P, He L, Richardson C J K. 2 μm laterally coupled distributed-feedback GaSb-based metamorphic laser grown on a GaAs substrate[J]. Appl. Phys. Lett, 2013, 102(23):231101.

    [13] Deng Z, Chen B, Chen X, et al. Optical properties of beryllium-doped GaSb epilayers grown on GaAs substrate[J]. Infrared Phys. Technol. , 2018, 90:115-121.

    [14] Compeán-Jasso V H, de Anda-Salazar F, Sánchez-Nin~o F, et al. High and abrupt breakdown voltage In0.15Ga0.85As0.14Sb0.86/GaSb junctions grown by LPE[J]. Infrared Phys. Technol. , 2016, 79:32-35.

    [15] Miller L M, Verdeyen J T, Coleman J J, et al. A distributed feedback ridge waveguide quantum well heterostructure laser[J]. IEEE Photon. Technol. Lett. , 1991, 3(1):6-8.

    [16] Li J, Cheng J. Laterally-coupled distributed feedback laser with first-order gratings by interference lithography[J]. Electron. Lett. , 2013, 49(12):764-765.

    [17] Yang C A, Zhang Y, Liao Y P, et al. 2 μm single longitudinal mode GaSb-based laterally coupled distributed feedback laser with regrowth-free shallow-etched gratings by interference lithography[J]. Chin. Phys. B, 2016, 25(2):024204.

    HUANG Shu-Shan, YANG Cheng-Ao, ZHANG Yu, XIE Sheng-wen, LIAO Yong-Ping, CHAI Xiao-Li, XU Ying-Qiang, NIU Zhi-Chuan. A simple approach to obtain 2.0 μm GaSb laser by using high-order distributed Bragg reflector[J]. Journal of Infrared and Millimeter Waves, 2018, 37(6): 653
    Download Citation