• Photonics Research
  • Vol. 12, Issue 1, 85 (2024)
Andrea Zazzi1, Arka Dipta Das1, Lukas Hüssen2, Renato Negra2, and Jeremy Witzens1、*
Author Affiliations
  • 1Institute of Integrated Photonics, RWTH Aachen University, 52074 Aachen, Germany
  • 2Chair of High-Frequency Electronics, RWTH Aachen University, 52074 Aachen, Germany
  • show less
    DOI: 10.1364/PRJ.493888 Cite this Article Set citation alerts
    Andrea Zazzi, Arka Dipta Das, Lukas Hüssen, Renato Negra, Jeremy Witzens. Scalable orthogonal delay-division multiplexed OEO artificial neural network trained for TI-ADC equalization[J]. Photonics Research, 2024, 12(1): 85 Copy Citation Text show less
    References

    [1] Y. Shen, N. C. Harris, S. Skirlo. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [2] G. Wetzstein, A. Ozcan, S. Gigan. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [3] A. Lugnan, A. Katumba, F. Laporte. Photonic neuromorphic information processing and reservoir computing. APL Photonics, 5, 020901(2020).

    [4] I. A. D. Williamson, T. W. Hughes, M. Minkov. Reprogrammable electro-optic nonlinear activation function for optical neural networks. IEEE J. Sel. Top. Quantum Electron., 26, 7700412(2020).

    [5] J. Feldmann, N. Youngblood, M. Karpov. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [6] C. Huang, S. Fujisawa, T. Ferreira de Lima. A silicon-electronic neural network for fibre nonlinearity compensation. Nat. Electron., 4, 837-844(2021).

    [7] F. Ashtiani, A. J. Geers, F. Aflatouni. An on-chip photonic deep neural network for image classification. Nature, 606, 501-506(2022).

    [8] X. Xu, W. Han, M. Tan. Neuromorphic computing based on wavelength-division multiplexing. IEEE J. Sel. Top. Quantum Electron., 29, 7400112(2023).

    [9] Y. Han, B. Jalali. Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating. IEEE Trans. Circ. Syst., 52, 1502-1507(2005).

    [10] N. K. Fontaine, R. P. Scott, L. Zhou. Real-time full-field arbitrary optical waveform measurement. Nat. Photonics, 4, 248-254(2010).

    [11] A. Khilo, S. J. Spector, M. E. Grein. Photonic ADC: overcoming the bottleneck of electronic jitter. Opt. Express, 20, 4454-4469(2012).

    [12] A. Misra, C. Kress, K. Singh. Integrated source-free all optical sampling with a sampling rate of up to three times the RF bandwidth of silicon photonic MZM. Opt. Express, 27, 29972-29984(2019).

    [13] D. Fang, A. Zazzi, J. Müller. Optical arbitrary waveform measurement (OAWM) using silicon photonic slicing filters. J. Lightwave Technol., 40, 1705-1717(2021).

    [14] A. Zazzi, J. Müller, M. Weitzel. Optically enabled ADCs and application to optical communications. IEEE Open J. Solid-State Circ. Soc., 1, 209-221(2021).

    [15] D. Drayß, D. Fang, C. Füllner. Slice-less arbitrary waveform measurement (OAWM) in a bandwidth of more than 600 GHz. Proceedings of Optical Fiber Communications Conference (OFC), M2I.1(2022).

    [16] K. Singh, J. Meier, A. Misra. Photonic arbitrary waveform generation with three times the sampling rate of the modulator bandwidth. IEEE Photonics Technol. Lett., 32, 1544-1547(2020).

    [17] T. Henauer, A. Sherifaj, C. Füllner. 200  GBd 16QAM signals synthesized by an actively phase-stabilized optical arbitrary waveform generator (OAWG). Proceedings of Optical Fiber Communications Conference (OFC), M2I.2(2022).

    [18] F. Ashtiani, A. Risi, F. Aflatooni. Single-chip nanophotonic near-field imager. Optica, 6, 1255-1260(2019).

    [19] Y. Yang, Y. Ma, H. Guan. Phase coherence length in silicon photonic platform. Opt. Express, 23, 16890-16902(2015).

    [20] P. Dong, W. Qian, H. Liang. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt. Express, 18, 20298-20304(2010).

    [21] R. Amin, R. Maiti, Y. Gui. Sub-wavelength GHz-fast broadband ITO Mach-Zehnder modulator on silicon photonics. Optica, 7, 333-335(2020).

    [22] C. Ríos, M. Stegmaier, P. Hosseini. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics, 9, 725-732(2015).

    [23] C. Ríos, Q. Du, Y. Zhang. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX, 3, 26(2022).

    [24] T. Grottke, W. Hartmann, C. Schuck. Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range. Opt. Express, 29, 5525-5537(2021).

    [25] N. Hosseini, R. Dekker, M. Hoekman. Stress-optic modulator in TriPlex platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt. Express, 23, 14018-14026(2015).

    [26] W. D. Sacher, J. C. Mikkelsen, Y. Huang. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices. Proc. IEEE, 106, 2232-2245(2018).

    [27] M. Piels, J. F. Bauters, M. L. Davenport. Low-loss silicon nitride AWG demultiplexer heterogeneously integrated with hybrid III-V/silicon photodetectors. J. Lightwave Technol., 32, 817-823(2014).

    [28] B. Stern, X. Ji, Y. Okawachi. Battery-operated integrated frequency comb generator. Nature, 562, 401-405(2018).

    [29] A. S. Raja, A. S. Voloshin, H. Guo. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

    [30] H. El Dirani, L. Youssef, C. Petit-Etienne. Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators. Opt. Express, 27, 30726-30740(2019).

    [31] L. Zhang, Y. Li, Y. Hou. Investigation and demonstration of a high-power handling and large-range steering optical phased array chip. Opt. Express, 29, 29755-29765(2021).

    [32] K. Takiguchi, T. Kitoh, A. Mori. Optical orthogonal frequency division multiplexer using slab star coupler-based optical discrete Fourier transform circuit. Opt. Lett., 36, 1140-1142(2011).

    [33] A. Mekis, A. Narasimha, J. Witzens. Method and system for integrated power combiners. U.S. Patent(2016).

    [34] M. Milanizadeh, S. M. Seyedin Navadeh, F. Zanetto. Separating arbitrary free-space beams with an integrated photonic processor. Light Sci. Appl., 11, 197(2022).

    [35] S. Wolf, H. Zwickel, W. Hartmann, M. Lauermann, Y. Kutuvantavida, C. Kieninger, L. Altenhain, R. Schmid, J. Luo, A. K.-Y. Jen, S. Randel, W. Freude, C. Koos. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100  Gbit/s on-off keying. Sci. Rep., 8, 2598(2018).

    [36] Y. Xie, J. Li, Y. Zhang, Z. Wu, S. Zeng, S. Lin, Z. Wu, W. Zhou, Y. Chen, S. Yu. Soliton frequency comb generation in CMOS-compatible silicon nitride microresonators. Photonics Res., 10, 1290-1296(2022).

    [37] C. Bao, L. Zhang, A. Matsko. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett., 39, 6126-6129(2014).

    [38] J. Zang, S.-P. Yu, D. R. Carlson. High-efficiency microcombs aligned with ITU-T grid for WDM optical interconnects. Proceedings of Optical Fiber Communications Conference (OFC), Th1B.6(2023).

    [39] Ó. B. Helgason, M. Girardi, Z. Ye. Power-efficient soliton microcombs. arXiv(2022).

    [40] S. Cuyvers, B. Haq, C. Op de Beeck. Low noise heterogeneous III-V-on-silicon-nitride mode-locked comb laser. Laser Photonics Rev., 15, 200485(2021).

    [41] K. Li, S. Liu, D. J. Thomson. Electronic-photonic convergence for silicon photonics transmitters beyond 100  Gbps on-off keying. Optica, 7, 1514-1516(2020).

    [42] S. Ummethala, J. N. Kemal, A. S. Alam. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica, 8, 511-519(2021).

    [43] Q. Lin, O. J. Painter, G. P. Agrawal. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express, 15, 16604-16644(2007).

    [44] T. J. Kippenberg, A. L. Gaeta, M. Lipson. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [45] R. Rosales, K. Merghem, A. Martinez. Timing jitter from the optical spectrum in semiconductor passively locked lasers. Opt. Express, 20, 9151-9160(2012).

    [46] A. Zazzi, J. Müller, S. Gudyriev. Fundamental limitations of spectrally-sliced optically enabled data converters arising from MLL timing jitter. Opt. Express, 28, 18790-18813(2020).

    [47] T. Tetsumoto, T. Nagatsuma, M. E. Fermann. Optically referenced 300  GHz millimetre-wave oscillator. Nat. Photonics, 15, 516-522(2021).

    [48] S.-W. Huang, J. Yang, J. Lim. A low-phase-noise 18  GHz Kerr frequency microcomb phase-locked over 65 THz. Sci. Rep., 5, 13355(2015).

    [49] D. Jeong, D. Kwon, I. Jeon. Ultralow jitter silica microcomb. Optica, 7, 1108-1111(2020).

    [50] S. Datta, S. Agashe, S. R. Forrest. A high bandwidth analog heterodyne RF optical link with high dynamic range and low noise figure. IEEE Photonics Technol. Lett., 16, 1733-1735(2004).

    [51] C. Kienninger, Y. Kutuvantavida, H. Miura. Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85°C. Opt. Express, 26, 27955-27964(2018).

    [52] D. Kucharski, D. Guckenberger, G. Masini, S. Abdalla, J. Witzens, S. Sahni. 10  Gb/s 15  mW optical receiver with integrated Germanium photodetector and hybrid inductor peaking in 0.13  μm SOI CMOS technology. Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 360-361(2010).

    [53] W. Sun, Z. Wang, A. Chen. Electro-optic thin films of organic nonlinear optic molecules aligned through vacuum deposition. Opt. Express, 19, 11189-11195(2011).

    [54] J. Witzens, T. Baehr-Jones, M. Hochberg. Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links. Opt. Express, 18, 16902-16928(2010).

    [55] A. Maese-Novo, R. Halir, S. Romero-García. Wavelength independent multimode interference coupler. Opt. Express, 21, 7033-7040(2013).

    [56] T. Föhn, W. Vogel, M. Schmidt. Optimized 90° hybrids with sidewall grating in silicon on insulator. Proceedings of Optical Fiber Communication (OFC) Conference, Th3F.4(2014).

    [57] Z. Lu, H. Yun, Y. Wang. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt. Express, 23, 3795-3808(2015).

    [58] M. Schaedler, C. Bluemm, M. Kuschnerov. Deep neural network equalization for optical short reach communications. Appl. Sci., 9, 4675(2019).

    [59] A. Moscoso-Mártir, J. Koch, O. Schulz. Silicon photonic integrated circuits for soliton based long haul optical communication. J. Lightwave Technol., 40, 3210-3222(2022).

    [60] A. Zazzi, J. Müller, I. Ghannam. Wideband SiN pulse interleaver for optically-enabled analog-to-digital conversion: a device-to-system analysis with cyclic equalization. Opt. Express, 30, 4444-4466(2022).

    [61] M. Weizel, F. X. Kaertner, J. Witzens. Photonic analog-to-digital-converters–comparison of a MZM-sampler with an optoelectronic switched-emitter-follower sampler. Proceedings of 21st ITG Symposium on Photonic Networks, 119-124(2020).

    [62] D. Knierim. Ultra-wide-bandwidth oscilloscope architecture and circuits. Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), 136-142(2014).

    [63] J. Nojić, A. Tabatabaei-Mashayekh, T. Rahman. Laser phase noise in ring resonator assisted direct detection data transmission. IEEE J. Sel. Top. Quantum Electron., 27, 8100212(2021).

    [64] C. Dragone. Efficiency of a periodic array with nearly ideal element pattern. IEEE Photonics Technol. Lett., 1, 238-240(1989).

    [65] C. Dragone, C. H. Henry, I. P. Kaminow. Efficient multichannel integrated optics star coupler on silicon. IEEE Photonics Technol. Lett., 1, 241-243(1989).

    Andrea Zazzi, Arka Dipta Das, Lukas Hüssen, Renato Negra, Jeremy Witzens. Scalable orthogonal delay-division multiplexed OEO artificial neural network trained for TI-ADC equalization[J]. Photonics Research, 2024, 12(1): 85
    Download Citation