• Opto-Electronic Engineering
  • Vol. 49, Issue 8, 210439 (2022)
Jingyuan Liang1、*, Ruidong Chen1, Haifeng Yao2, Bo Bai6, Minghua Cao4, Li Zhao5、*, Yi Wang3、*, and Jiaxin Deng1
Author Affiliations
  • 1School of Automation and Information Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
  • 2The School of Electro-Optical Engineering, Changchun University of Science and Technology, Changchun, Jilin 130013, China
  • 3College of Information Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
  • 4School of Computer and Communication, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • 5Electronic Information Engineering, Xi'an Technology University, Xi'an, Shaanxi 710021, China
  • 6School of Telecommunications Engineering, Xidian University, Xi'an, Shaanxi 710119, China
  • show less
    DOI: 10.12086/oee.2022.210439 Cite this Article
    Jingyuan Liang, Ruidong Chen, Haifeng Yao, Bo Bai, Minghua Cao, Li Zhao, Yi Wang, Jiaxin Deng. Research progress of acquisition, pointing and tracking in optical wireless communication system[J]. Opto-Electronic Engineering, 2022, 49(8): 210439 Copy Citation Text show less
    Optical wireless communication APT system diagram[5]
    Fig. 1. Optical wireless communication APT system diagram[5]
    Typical wireless laser communication APT system diagram[1]
    Fig. 2. Typical wireless laser communication APT system diagram[1]
    Schematic diagram of experimental azimuth[33]
    Fig. 3. Schematic diagram of experimental azimuth[33]
    Composite axis pointing system[42-43]
    Fig. 4. Composite axis pointing system[42-43]
    Suppress the error before and after the angle increment[43]. (a) Angle increment before error suppression; (b) Angle increment after error supperssion
    Fig. 5. Suppress the error before and after the angle increment[43]. (a) Angle increment before error suppression; (b) Angle increment after error supperssion
    Alignment response curve[43]
    Fig. 6. Alignment response curve[43]
    The relationship between input voltage and angle[43]. (a) Control voltage and angle in θx direction; (b) Control voltage and angle in θz direction
    Fig. 7. The relationship between input voltage and angle[43]. (a) Control voltage and angle in θx direction; (b) Control voltage and angle in θz direction
    Structure of beam detection system[5]
    Fig. 8. Structure of beam detection system[5]
    Four kinds of situations of light beam detection[5]. (a) α=0, p=0; (b) α≠0, p=0; (c) α=0, p≠0; (d) α≠0, p≠0
    Fig. 9. Four kinds of situations of light beam detection[5]. (a) α=0, p=0; (b) α≠0, p=0; (c) α=0, p≠0; (d) α≠0, p≠0
    Transceiver integrated UAV relay APT system[45]
    Fig. 10. Transceiver integrated UAV relay APT system[45]
    The signal waveform of the oscilloscope at the receiving[45]
    Fig. 11. The signal waveform of the oscilloscope at the receiving[45]
    Coordinate position distribution of spot center[45]
    Fig. 12. Coordinate position distribution of spot center[45]
    1.3 km far-field experimental system assembly structure diagram[5]
    Fig. 13. 1.3 km far-field experimental system assembly structure diagram[5]
    Spot position coordinates (2016-05-25 22:46~2016-05-26 22:00, rainy, 13 ℃~18 ℃)[5]. (a) Azimuth direction; (b) Pitching direction
    Fig. 14. Spot position coordinates (2016-05-25 22:46~2016-05-26 22:00, rainy, 13 ℃~18 ℃)[5]. (a) Azimuth direction; (b) Pitching direction
    Schematic diagram of beam tracking system[47]
    Fig. 15. Schematic diagram of beam tracking system[47]
    Tracking curve of beam (2017-12-05 18:00~2017-12-06 6:00, cloudy, −1 ℃~9 ℃)[47](a) Azimuth direction; (b) Pitching direction
    Fig. 16. Tracking curve of beam (2017-12-05 18:00~2017-12-06 6:00, cloudy, −1 ℃~9 ℃)[47](a) Azimuth direction; (b) Pitching direction
    Statistical results of maintaining the beam position (2017-12-05 18:00~2017-12-06 6:00, cloudy, −1°~9°)[47] (a) Azimuth direction; (b) Pitching direction
    Fig. 17. Statistical results of maintaining the beam position (2017-12-05 18:00~2017-12-06 6:00, cloudy, −1°~9°)[47] (a) Azimuth direction; (b) Pitching direction
    Assembly drawing of beacon free optical APT system of 10.2 km experiment[43]
    Fig. 18. Assembly drawing of beacon free optical APT system of 10.2 km experiment[43]
    Spot center coordinates curve (2018-09-30 21:00~2018-10-01 0:00, sunny, 17 ℃)[48]. (a) Azimuth direction; (b) Pitching direction
    Fig. 19. Spot center coordinates curve (2018-09-30 21:00~2018-10-01 0:00, sunny, 17 ℃)[48]. (a) Azimuth direction; (b) Pitching direction
    Spot center coordinates curve (2018.10.1 21:00~2018.10.2. 0:00, cloudy, 12 ℃)[48]. (a) Azimuth direction; (b) Pitching direction
    Fig. 20. Spot center coordinates curve (2018.10.1 21:00~2018.10.2. 0:00, cloudy, 12 ℃)[48]. (a) Azimuth direction; (b) Pitching direction
    Spot center coordinates curve (2018-10-02 21:00~2018-10-02 0:00, cloudy, 14 ℃)[48]. (a) Azimuth direction; (b) Pitching direction
    Fig. 21. Spot center coordinates curve (2018-10-02 21:00~2018-10-02 0:00, cloudy, 14 ℃)[48]. (a) Azimuth direction; (b) Pitching direction
    Spot center fitting curve[48].(a) Change curve of spot center position; (b) Temperature and humidity curve
    Fig. 22. Spot center fitting curve[48].(a) Change curve of spot center position; (b) Temperature and humidity curve
    100 km field experiment scene[48]. (a) Receiving terminal; (b) Transmitting terminal
    Fig. 23. 100 km field experiment scene[48]. (a) Receiving terminal; (b) Transmitting terminal
    Spot center coordinate change curve (The first experiment)[48]. (a) Spot center coordinates in horizontal direction; (b) Spot center coordinates in pitch direction (2019-08-18 23:00~2019-08-19 02:00, sunny, 14 ℃)
    Fig. 24. Spot center coordinate change curve (The first experiment)[48]. (a) Spot center coordinates in horizontal direction; (b) Spot center coordinates in pitch direction (2019-08-18 23:00~2019-08-19 02:00, sunny, 14 ℃)
    Spot center coordinate change curve (The second experiment)[48]. (a) Spot center coordinates in horizontal; (b) Spot center coordinates in pitch direction (2019-08-20 23:00~2019-08-20 02: 00, cloudy and rainy, 9 ℃)
    Fig. 25. Spot center coordinate change curve (The second experiment)[48]. (a) Spot center coordinates in horizontal; (b) Spot center coordinates in pitch direction (2019-08-20 23:00~2019-08-20 02: 00, cloudy and rainy, 9 ℃)
    Wireless optical communication IM/DD system with fast alignment of two-dimensional mirror[40]
    Fig. 26. Wireless optical communication IM/DD system with fast alignment of two-dimensional mirror[40]
    Experiment of wireless optical communication for 10.3 km[40]
    Fig. 27. Experiment of wireless optical communication for 10.3 km[40]
    Beam tracing curve (2021-07-24 23:00~2021-07-25 6:00)[40]. (a) Pitching direction; (b) Azimuth direction
    Fig. 28. Beam tracing curve (2021-07-24 23:00~2021-07-25 6:00)[40]. (a) Pitching direction; (b) Azimuth direction
    Power spectrum density estimate[40]. (a) X position; (b) Y position
    Fig. 29. Power spectrum density estimate[40]. (a) X position; (b) Y position
    Spot tracking curve and PSD[40]. (a) Curve of the beam tracking; (b) Curve of the beam tracking in X and Y directions; (c) X PSD; (d) Y PSD
    Fig. 30. Spot tracking curve and PSD[40]. (a) Curve of the beam tracking; (b) Curve of the beam tracking in X and Y directions; (c) X PSD; (d) Y PSD
    Receive and transmit signal waveforms[40]. (a) Transmitting signal; (b) Receiving signal
    Fig. 31. Receive and transmit signal waveforms[40]. (a) Transmitting signal; (b) Receiving signal
    文献年份人物/组织研究进展优点/参数
    [6] 1985NASDA激光通信设备LUCE系统跟瞄精度均优于1 mrad
    [7] 1994JPL激光通信演示终端OCD通信速率250 Mb/s
    [8] 1994MPT激光通信设备LCE粗、精跟踪精度优于32 μrad、2 μrad
    [9] 1999A.Biswas激光通信终端LCT系统CCD工作帧频1.6 kHz
    [10] 2001ESA复合轴瞄准系统应用于SILEX系统跟踪精度可达2 μrad
    [11] 2001M.Guelman利用复合轴APT系统进行激光通信实验首次采用复合轴APT系统
    [12] 2004MIT NASA火星激光通信演示OLCD系统通信速率可达10 Mb/s
    [13] 2008DLR激光通信终端LCT平均跟踪误差226 μrad
    [14] 2012S.Christopher能够实现宽视场捕获和瞄准的小型激光终端捕获视场46°
    [15] 2013DLR“狂风”战斗机实现地对空激光通信实验链路距离79 km、数据传输速率1.25 Gb/s
    [17] 2016C.Quintana应用于机载激光通信的粗精跟踪系统空对地通信速率可达2 Mb/s
    [18] 2020A.Riccardo应用于卫星通信的小型化高精度瞄准终端瞄准误差小于10 μrad
    Table 1. Research progress abroad
    文献年份人物/组织研究进展特点/参数
    [4] 1999刘泽金、舒柏宏高能激光束自动瞄准系统稳定有效带宽为50 Hz
    [30] 2005柯熙政、刘长城光束自动捕获系统建立ATP系统仿真模型
    [19] 2005艾勇、周亚霖空间光APT系统角度测量相对误差约为1.3%
    [20] 2007姜会林、佟首峰复合轴粗跟踪伺服带宽优化设计粗、精跟踪精度分别为60 μrad和4 μrad
    [21] 2008潘高峰、张景旭共光路自动瞄准系统瞄准精度可达20.52 μrad
    [31] 2011柯熙政、胡启迪信标光光斑检测系统利用PSD和CCD两种探测器设计APT子系统
    [22] 2011宋延嵩、常帅空空机载激光通信实验通信速率1.5 Gb/s
    [23] 2013钱锋、贾建军新型光斑探测相机噪声对定位误差的影响降低至0.007 pixel
    [24] 2015孟立新、赵丁选粗、精复合跟踪系统粗、精跟踪精度分别优于23.97 μrad和 7.0 μrad
    [32] 2016柯熙政、杨沛松同轴瞄准检测方法角度跟踪精度为34.6 μrad
    [33] 2016柯熙政、赵奇初始捕获系统采用位置校准点方法,减少系统设计成本
    [25] 2017张元生、仇振安应用于机载激光通信的APT系统跟踪精度可达10 μrad
    [36] 2019柯熙政、严希光斑跟踪系统跟踪精度可达5.4 μrad
    [26] 2019蔡美华、孔德聪单探测型复合轴粗精瞄准系统跟踪精度可达9.69 μrad
    [35] 2020柯熙政、景永康光斑图像检测算法100 km实验中实现无信标光瞄准
    [38] 2020柯熙政、张璞捕获、瞄准及调焦系统10.2 km实验跟瞄精度为27.12 μrad
    [27] 2020任斌、鲁倩四象限探测器跟踪系统跟踪精度优于3 μrad
    [39] 2021柯熙政、杨尚君二位反射镜快速对准系统发射端采用相机标定,无需回传控制信息即可完成瞄准
    [39] 2021柯熙政、梁韩立机载激光自动跟踪控制系统跟踪精度可达2.42 μrad
    [28] 2021李千、吴志勇BP神经网络位置检测/多单元阵列探测位置检测光斑位置检测系统角分辨率0.187 μrad/0.903 μrad
    Table 2. Domestic research progress
    位置精度/(°)纬度/(°)海拔高度/m方位角(计算)俯仰角(计算)方位角(真实)俯仰角(真实)
    A108.98904734.254260424
    B108.98699334.254459421
    C108.98801834.25320742241.3710930.01474941.1007640.010549
    D108.98742534.25313642130.354963−0.03186030.194587−0.30598
    E108.98403034.25202442519.403518−0.03611419.005784−0.500756
    F108.98430534.25233542517.402036−0.03970317.315786−0.690475
    G108.98409534.25238742515.973571−0.02983016.147860−0.712659
    H108.98396234.25230242413.204046−0.01855913.185405−0.685246
    I108.98402234.2529504259.599473−0.0098929.305784−0.684959
    J108.98400834.2532074246.6550630.0014876.512407−0.685026
    K108.98399234.2534424223.9116380.0146223.850078−0.685104
    L108.98318134.254314417−5.1855540.056791−4.990479−0.571054
    Table 3. Capture uncertain region to solve the experimental data record table[33]
    Jingyuan Liang, Ruidong Chen, Haifeng Yao, Bo Bai, Minghua Cao, Li Zhao, Yi Wang, Jiaxin Deng. Research progress of acquisition, pointing and tracking in optical wireless communication system[J]. Opto-Electronic Engineering, 2022, 49(8): 210439
    Download Citation