• Chinese Journal of Lasers
  • Vol. 50, Issue 4, 0402011 (2023)
Zijun Zhou, Fulin Jiang*, Fazhan Yang, Yuling Wang, Yong Yang, Pengfang Song, and Zhaolin Zhong
Author Affiliations
  • Key Laboratory of Laser Green Intelligent Manufacturing Technology, School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
  • show less
    DOI: 10.3788/CJL220498 Cite this Article Set citation alerts
    Zijun Zhou, Fulin Jiang, Fazhan Yang, Yuling Wang, Yong Yang, Pengfang Song, Zhaolin Zhong. Eutectic Behavior and Wear and Corrosion Resistance Mechanisms of FeCoNiCrNb0.5Mo0.25 High-Entropy Alloy Laser Cladding Layer Microstructure[J]. Chinese Journal of Lasers, 2023, 50(4): 0402011 Copy Citation Text show less
    References

    [1] Yeh J W, Chen S K, Lin S J et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 6, 299-303(2004).

    [2] Singh A K, Subramaniam A. On the formation of disordered solid solutions in multi-component alloys[J]. Journal of Alloys and Compounds, 587, 113-119(2014).

    [3] Weng Z Q, Dong G, Zhang Q L et al. Effects of annealing on microstructure and properties of FeCrNiCoMn high-entropy alloy coating prepared by laser cladding[J]. Chinese Journal of Lasers, 41, 0303002(2014).

    [4] Yu Y, He F, Qiao Z H et al. Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys[J]. Journal of Alloys and Compounds, 775, 1376-1385(2019).

    [5] Jin X, Liang Y X, Bi J et al. Enhanced strength and ductility of Al0.9CoCrNi2.1 eutectic high entropy alloy by thermomechanical processing[J]. Materialia, 10, 100639(2020).

    [6] Senkov O N, Senkova S V, Dimiduk D M et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Journal of Materials Science, 47, 6522-6534(2012).

    [7] Nascimento C B, Donatus U, Ríos C T et al. Electronic properties of the passive films formed on CoCrFeNi and CoCrFeNiAl high entropy alloys in sodium chloride solution[J]. Journal of Materials Research and Technology, 9, 13879-13892(2020).

    [8] Cui C, Wu M P, Xia S H. Effect of heat treatment on properties of laser cladding cobalt-based coating on 42CrMo steel surface[J]. Chinese Journal of Lasers, 47, 0602011(2020).

    [9] Liang H, Miao J W, Gao B Y et al. Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in seawater, NaCl solution and deionized water[J]. Surface and Coatings Technology, 400, 126214(2020).

    [10] Wen X, Cui X F, Jin G et al. Design and characterization of FeCrCoAlMn0.5Mo0.1 high-entropy alloy coating by ultrasonic assisted laser cladding[J]. Journal of Alloys and Compounds, 835, 155449(2020).

    [11] Zhou F, Liu Q B, Zheng B. Effects of silicon and aluminum addition on microstructure and properties of MoFeCrTiW high-entropy alloy coating[J]. Chinese Journal of Lasers, 43, 0203002(2016).

    [12] Huang L F, Sun Y N, Ji Y Q et al. Investigation of microstructures and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entropy alloy[J]. Chinese Journal of Lasers, 48, 0602107(2021).

    [13] Zhang H Y, Yu M, Hua J W et al. Effects of Mo on microstructure and properties of Fe-Cr-Mo laser cladding layer[J]. Chinese Journal of Lasers, 48, 2202010(2021).

    [14] Feng J Y, Xiao H Q, Xiao Y et al. Microstructure and mechanical properties of laser cladded Ti-Al-(C, N) composite coating on TC4 surface[J]. Chinese Journal of Lasers, 49, 0202015(2022).

    [15] An X L, Wang Y L, Jiang F L et al. Influence of lap ratio on temperature field and residual stress distribution of 42CrMo laser cladding[J]. Chinese Journal of Lasers, 48, 1002110(2021).

    [16] Ding Q F, Pang M. Thermal-mechanical coupling simulation of high-entropy alloy laser cladding for inner barrel of an oil pump[J]. Laser & Optoelectronics Progress, 58, 0514002(2021).

    [17] Dong Y, Shu L S, Lin R. Microstructure and friction and wear properties of laser cladded Fe-Cr-Mo-Si alloy coating[J]. Laser & Optoelectronics Progress, 58, 1914007(2021).

    [18] Lin R, Shu L S, Dong Y et al. Effect of laser power and scanning speed on microstructure and properties of cladding[J]. Laser & Optoelectronics Progress, 58, 1914004(2021).

    [19] Shi X Y, Wen D S, Wang S R et al. Microstructures and high-temperature friction and wear properties of laser cladded Fe-Ni-Cr gradient composite coating for brake disc[J]. Chinese Journal of Lasers, 49, 0202017(2022).

    [20] Dzionk S, Przybylski W, Ścibiorski B. The possibilities of improving the fatigue durability of the ship propeller shaft by burnishing process[J]. Machines, 8, 63(2020).

    [21] Bellezze T, Roventi G, Fratesi R. Localised corrosion and cathodic protection of 17 4PH propeller shafts[J]. Corrosion Engineering, Science and Technology, 48, 340-345(2013).

    [22] Arisoy C F, Başman G, Şeşen M K. Failure of a 17-4 PH stainless steel sailboat propeller shaft[J]. Engineering Failure Analysis, 10, 711-717(2003).

    [23] Kettrakul P, Promdirek P. Failure analysis of propeller shaft used in the propulsion system of a fishing boat[J]. Materials Today: Proceedings, 5, 9624-9629(2018).

    [24] Huang Q W, Yan X P, Zhang C et al. Coupled transverse and torsional vibrations of the marine propeller shaft with multiple impact factors[J]. Ocean Engineering, 178, 48-58(2019).

    [25] Lin Y C, Chen M S, Zhong J. Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel[J]. Journal of Materials Processing Technology, 205, 308-315(2008).

    [26] Tsau C H, Yeh C Y, Tsai M C. The effect of Nb-content on the microstructures and corrosion properties of CrFeCoNiNbx high-entropy alloys[J]. Materials, 12, 3716(2019).

    [27] Shuang S, Ding Z Y, Chung D et al. Corrosion resistant nanostructured eutectic high entropy alloy[J]. Corrosion Science, 164, 108315(2020).

    [28] Shuang S, Yu Q, Gao X et al. Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy[J]. Journal of Materials Science & Technology, 109, 197-208(2022).

    [29] He F, Wang Z J, Cheng P et al. Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. Journal of Alloys and Compounds, 656, 284-289(2016).

    [30] Chung D Y, Ding Z Y, Yang Y. Hierarchical eutectic structure enabling superior fracture toughness and superb strength in CoCrFeNiNb0.5 eutectic high entropy alloy at room temperature[J]. Advanced Engineering Materials, 21, 1801060(2019).

    [31] He F, Wang Z J, Shang X L et al. Stability of lamellar structures in CoCrFeNiNbx eutectic high entropy alloys at elevated temperatures[J]. Materials & Design, 104, 259-264(2016).

    [32] Fu Y, Huang C, Du C W et al. Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding[J]. Corrosion Science, 191, 109727(2021).

    [33] Liu W H, Lu Z P, He J Y et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases[J]. Acta Materialia, 116, 332-342(2016).

    [34] Meng S G, Zhu B L, Zhuang Z F et al. Effect of excitation coil voltage on TiAlSiN coating on 42CrMo steel surface[J]. Materials Research Express, 7, 056519(2020).

    [35] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 46, 2817-2829(2005).

    [36] Jiang H, Han K M, Gao X X et al. A new strategy to design eutectic high-entropy alloys using simple mixture method[J]. Materials & Design, 142, 101-105(2018).

    [37] Hidouci A, Pelletier J M, Ducoin F et al. Microstructural and mechanical characteristics of laser coatings[J]. Surface and Coatings Technology, 123, 17-23(2000).

    [38] Song C Y, Wang S H, Liu J C et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12 binary eutectic ceramic prepared by bridgman method[J]. Materials, 11, 534(2018).

    [39] Kuang S H, Zhou F, Zheng S S et al. Annealing-induced microstructure and properties evolution of refractory MoFeCrTiWAlNb3 eutectic high-entropy alloy coating by laser cladding[J]. Intermetallics, 129, 107039(2021).

    [40] Ai C, He F, Guo M et al. Alloy design, micromechanical and macromechanical properties of CoCrFeNiTax eutectic high entropy alloys[J]. Journal of Alloys and Compounds, 735, 2653-2662(2018).

    [41] Su H, Ma B, Yi Y H et al. Microstructure and properties of 42CrMo after laser surface melting and quenching[J]. Ordnance Material Science and Engineering, 34, 84-86(2011).

    [42] Jiao Y X, Deng D W, Sun Q et al. Influence of process parameter on laser quenching effect of 42CrMo steel[J]. Heat Treatment of Metals, 46, 90-96(2021).

    [43] Tripathy B S, Furey M J, Kajdas C. Mechanism of wear reduction of alumina by tribopolymerization[J]. Wear, 181/182/183, 138-147(1995).

    [44] Wu C L, Zhang S, Zhang C H et al. Phase evolution and properties in laser surface alloying of FeCoCrAlCuNix high-entropy alloy on copper substrate[J]. Surface and Coatings Technology, 315, 368-376(2017).

    [45] Muskeri S, Hasannaeimi V, Salloom R et al. Small-scale mechanical behavior of a eutectic high entropy alloy[J]. Scientific Reports, 10, 2669(2020).

    [46] Leyland A, Matthews A. Design criteria for wear-resistant nanostructured and glassy-metal coatings[J]. Surface and Coatings Technology, 177/178, 317-324(2004).

    [47] Oliver W C, Hutchings R, Pethica J B et al. Hardness as a measure of wear resistance[J]. MRS Online Proceedings Library, 27, 603-608(1983).

    [48] Leyland A, Matthews A. On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour[J]. Wear, 246, 1-11(2000).

    [49] Musil J. Hard nanocomposite coatings: thermal stability, oxidation resistance and toughness[J]. Surface and Coatings Technology, 207, 50-65(2012).

    [50] Tsui T Y, Pharr G M, Oliver W C et al. Nanoindentation and nanoscratching of hard coating materials for magnetic disks[J]. MRS Online Proceedings Library, 356, 767-772(1994).

    [51] Dang C Q, Li J L, Wang Y et al. Structure, mechanical and tribological properties of self-toughening TiSiN/Ag multilayer coatings on Ti6Al4V prepared by arc ion plating[J]. Applied Surface Science, 386, 224-233(2016).

    [52] Kumar N, Fusco M, Komarasamy M et al. Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy[J]. Journal of Nuclear Materials, 495, 154-163(2017).

    [53] Hsu Y J, Chiang W C, Wu J K. Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Materials Chemistry and Physics, 92, 112-117(2005).

    [54] Dai C D, Zhao T L, Du C W et al. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys[J]. Journal of Materials Science & Technology, 46, 64-73(2020).

    [55] Hasannaeimi V, Mukherjee S. Galvanic corrosion in a eutectic high entropy alloy[J]. Journal of Electroanalytical Chemistry, 848, 113331(2019).

    Zijun Zhou, Fulin Jiang, Fazhan Yang, Yuling Wang, Yong Yang, Pengfang Song, Zhaolin Zhong. Eutectic Behavior and Wear and Corrosion Resistance Mechanisms of FeCoNiCrNb0.5Mo0.25 High-Entropy Alloy Laser Cladding Layer Microstructure[J]. Chinese Journal of Lasers, 2023, 50(4): 0402011
    Download Citation