• Chinese Journal of Lasers
  • Vol. 50, Issue 4, 0402011 (2023)
Zijun Zhou, Fulin Jiang*, Fazhan Yang, Yuling Wang, Yong Yang, Pengfang Song, and Zhaolin Zhong
Author Affiliations
  • Key Laboratory of Laser Green Intelligent Manufacturing Technology, School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
  • show less
    DOI: 10.3788/CJL220498 Cite this Article Set citation alerts
    Zijun Zhou, Fulin Jiang, Fazhan Yang, Yuling Wang, Yong Yang, Pengfang Song, Zhaolin Zhong. Eutectic Behavior and Wear and Corrosion Resistance Mechanisms of FeCoNiCrNb0.5Mo0.25 High-Entropy Alloy Laser Cladding Layer Microstructure[J]. Chinese Journal of Lasers, 2023, 50(4): 0402011 Copy Citation Text show less
    Failure mode of ship stern shaft[20-21]
    Fig. 1. Failure mode of ship stern shaft[20-21]
    XRD results of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers
    Fig. 2. XRD results of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers
    SEM images of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers
    Fig. 3. SEM images of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers
    Microstructures of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers
    Fig. 4. Microstructures of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers
    Microhardness test results. (a) Microhardness test position; (b) microhardness curve; (c) average microhardness of cladding layer
    Fig. 5. Microhardness test results. (a) Microhardness test position; (b) microhardness curve; (c) average microhardness of cladding layer
    Element distributions of top of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers. (a) EDS line scanning direction; (b) 1200 W; (c) 1300 W; (d) 1400 W; (e) 1500 W; (f) 1600 W
    Fig. 6. Element distributions of top of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers. (a) EDS line scanning direction; (b) 1200 W; (c) 1300 W; (d) 1400 W; (e) 1500 W; (f) 1600 W
    Friction coefficient of substrate sample and FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer samples prepared at different laser powers. (a) Friction coefficient curve; (b) average friction coefficient
    Fig. 7. Friction coefficient of substrate sample and FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer samples prepared at different laser powers. (a) Friction coefficient curve; (b) average friction coefficient
    Low magnification and high magnification images of wear morphology of substrate sample and FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer samples prepared at different laser powers. (a1)(a2) 1200 W; (b1)(b2) 1300 W; (c1)(c2) 1400 W; (d1)(d2) 1500 W; (e1)(e2) 1600 W; (f1)(f2) substrate
    Fig. 8. Low magnification and high magnification images of wear morphology of substrate sample and FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer samples prepared at different laser powers. (a1)(a2) 1200 W; (b1)(b2) 1300 W; (c1)(c2) 1400 W; (d1)(d2) 1500 W; (e1)(e2) 1600 W; (f1)(f2) substrate
    Element distribution of on wear surface
    Fig. 9. Element distribution of on wear surface
    Three dimensional image and contour curve of wear surface of substrate sample and FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer samples prepared at different laser powers. (a) 1200 W; (b) 1300 W; (c) 1400 W; (d) 1500 W; (e) 1600 W; (f) substrate
    Fig. 10. Three dimensional image and contour curve of wear surface of substrate sample and FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer samples prepared at different laser powers. (a) 1200 W; (b) 1300 W; (c) 1400 W; (d) 1500 W; (e) 1600 W; (f) substrate
    Wear rate of high-entropy alloy cladding layer and substrate
    Fig. 11. Wear rate of high-entropy alloy cladding layer and substrate
    Relationship between wear rate of high-entropy alloy cladding layer and H/E*
    Fig. 12. Relationship between wear rate of high-entropy alloy cladding layer and H/E*
    Polarization curves of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer and substrate samples in 3.5% NaCl solution
    Fig. 13. Polarization curves of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer and substrate samples in 3.5% NaCl solution
    Surface corrosion morphologies of substrate sample and FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer samples prepared at different laser powers. (a) 1200 W; (b) 1300 W; (c) 1400 W; (d) 1500 W; (e) 1600 W; (f) substrate
    Fig. 14. Surface corrosion morphologies of substrate sample and FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer samples prepared at different laser powers. (a) 1200 W; (b) 1300 W; (c) 1400 W; (d) 1500 W; (e) 1600 W; (f) substrate
    Local enlarged feature of corrosion surface of high-entropy alloy cladding layer
    Fig. 15. Local enlarged feature of corrosion surface of high-entropy alloy cladding layer
    Relationship between FCC phase content and self corrosion current density
    Fig. 16. Relationship between FCC phase content and self corrosion current density
    ElementMass fraction /%
    C0.42
    Cr1.12
    Mn0.65
    Si0.28
    Mo0.22
    FeBal.
    Table 1. Chemical composition of 42CrMo steel[34]
    ElementFeCoNiCrNbMo
    Fe-1-2-1-16-2
    Co-10-4-25-5
    Ni-20-7-30-7
    Cr-1-4-7-70
    Nb-16-25-30-7-6
    Mo-2-5-70-6
    Table 2. Element binary mixing enthalpy35
    Power /WRegion inFig.3Atomic fraction /%
    FeCoNiCrNbMo
    1200A37.2116.6516.4017.028.893.83
    B32.4118.9318.8316.139.524.17
    C38.8916.2416.2015.0410.343.28
    1300A31.9619.8519.9016.418.573.34
    B32.4819.1319.9616.258.703.50
    C36.5216.9017.8114.7310.193.86
    1400A32.2318.2720.1216.928.953.51
    B31.1318.0320.0816.6810.433.66
    C36.4316.9318.1514.0810.843.56
    1500A37.9518.3318.3114.547.643.25
    B37.1016.7619.9215.147.773.22
    C44.3615.5114.0013.329.423.39
    1600A45.1715.4715.7712.807.693.11
    B42.1116.2015.7113.079.423.49
    C46.5314.2112.9712.7410.113.44
    Table 3. Element content in different regions of FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers
    Power /WAtomic fraction /%
    FeCoNiCrNbMo
    Nominal composition21.0521.0521.0521.0510.525.26
    120033.6116.7020.2316.199.633.64
    130033.8917.6818.2816.809.493.86
    140033.9018.6517.0516.0310.583.79
    150039.3017.7316.2215.018.163.58
    160042.7014.9615.4613.579.523.79
    Table 4. Each element content in FeCoNiCrNb0.5Mo0.25 cladding layer prepared at different laser powers
    Power /WPhaseAtomic fraction /%
    FeCoNiCrNbMo
    1200A31.8920.3223.5719.272.652.44
    B28.0919.9021.5517.948.234.30
    1300A36.1418.3521.5718.273.532.14
    B27.3219.4815.6213.1817.047.37
    1400A39.2717.1320.0816.594.742.17
    B29.8717.9114.2311.8919.216.90
    1500A45.5616.1017.5915.033.372.36
    B33.7916.6813.5111.3217.916.78
    1600A47.5016.4016.5015.281.912.40
    B32.9016.4912.0811.3219.537.69
    Table 5. Element content of phases of A and B in FeCoNiCrNb0.5Mo0.25 high-entropy alloy cladding layer prepared at different laser powers
    Power /WH /GPaE* /GPaH /E*
    12008.4534218.31940.0387
    13008.6006217.58330.0395
    14008.6966219.58260.0396
    15007.2948214.22000.0341
    16007.5393223.94270.0337
    Table 6. Microhardness H and effective elastic modulus E* of high-entropy alloy cladding layer obtained by nanoindentation test
    SampleEcorr /Vicorr /(A·cm-2
    1200 W-0.9313.506×10-6
    1300 W-0.6181.716×10-6
    1400 W-0.8064.332×10-6
    1500 W-0.6822.643×10-6
    1600 W-0.6431.930×10-6
    Substrate-0.8859.321×10-6
    Table 7. Electrochemical parameters of FeCoNiCrNb0.5Mo0.25high-entropy alloy cladding layer and substrate samples in 3.5% NaCl solution
    Power /WRegion in Fig.14Atomic fraction /%
    FeCoNiCrNbMoO
    1200A1.280.890.8815.0313.460.6767.79
    B16.6714.479.9012.5015.836.2214.40
    C27.2916.4520.7617.478.123.736.18
    1300A0.610.300.0118.4610.100.2870.22
    B20.7513.2612.9113.7313.805.7319.82
    C29.2716.9717.4314.6110.094.357.28
    1400A1.670.270.406.427.720.2583.81
    B18.7511.187.899.0515.457.0430.63
    C34.4217.8419.8016.434.622.814.09
    1500A0.520.360.0011.2611.650.0076.21
    B26.2913.419.7711.7616.086.9615.72
    C34.7915.4717.6114.059.734.713.64
    1600A3.090.700.8612.837.010.2775.25
    C37.2215.4114.7414.169.164.265.06
    Table 8. Element content in different corrosion areas
    Zijun Zhou, Fulin Jiang, Fazhan Yang, Yuling Wang, Yong Yang, Pengfang Song, Zhaolin Zhong. Eutectic Behavior and Wear and Corrosion Resistance Mechanisms of FeCoNiCrNb0.5Mo0.25 High-Entropy Alloy Laser Cladding Layer Microstructure[J]. Chinese Journal of Lasers, 2023, 50(4): 0402011
    Download Citation