• Advanced Photonics Nexus
  • Vol. 2, Issue 2, 026008 (2023)
Shigekazu Takizawa1, Kotaro Hiramatsu1、2、*, Matthew Lindley1, Julia Gala de Pablo1, Shunsuke Ono3, and Keisuke Goda1、4、5
Author Affiliations
  • 1The University of Tokyo, Department of Chemistry, Tokyo, Japan
  • 2The University of Tokyo, Research Center for Spectrochemistry, Tokyo, Japan
  • 3Tokyo Institute of Technology, School of Computing, Department of Computer Science, Tokyo, Japan
  • 4University of California, Department of Bioengineering, Los Angeles, California, United States
  • 5Wuhan University, Institute of Technological Sciences, Wuhan, China
  • show less
    DOI: 10.1117/1.APN.2.2.026008 Cite this Article Set citation alerts
    Shigekazu Takizawa, Kotaro Hiramatsu, Matthew Lindley, Julia Gala de Pablo, Shunsuke Ono, Keisuke Goda. High-speed hyperspectral imaging enabled by compressed sensing in time domain[J]. Advanced Photonics Nexus, 2023, 2(2): 026008 Copy Citation Text show less
    References

    [1] F. D. van der Meer et al. Multi- and hyperspectral geologic remote sensing: a review. Int. J. Appl. Earth Obs. Geoinf., 14, 112-128(2012).

    [2] B. Lu et al. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens., 12, 2659(2020).

    [3] H. Huang, L. Liu, M. Ngadi. Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors, 14, 7248-7276(2014).

    [4] J. M. Amigo. Practical issues of hyperspectral imaging analysis of solid dosage forms. Anal. Bioanal. Chem., 398, 93-109(2010).

    [5] G. J. Edelman et al. Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci. Int., 223, 28-39(2012).

    [6] G. Lu, B. Fei. Medical hyperspectral imaging: a review. J. Biomed. Opt., 19, 010901(2014).

    [7] R. O. Green et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sens. Environ., 65, 227-248(1998).

    [8] T. Cocks et al. The HyMap TM airborne hyperspectral sensor: the system, calibration and performance, 37-42(1998).

    [9] N. Gat. Imaging spectroscopy using tunable filters: a review, 50-64(2000).

    [10] N. Hagen. Snapshot advantage: a review of the light collection improvement for parallel high-dimensional measurement systems. Opt. Eng., 51, 111702(2012).

    [11] A. A. Wagadarikar et al. Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt. Express, 17, 6368(2009).

    [12] G. R. Arce et al. Compressive coded aperture spectral imaging: an introduction. IEEE Signal Process. Mag., 31, 105-115(2014).

    [13] R. Kinegawa et al. High-speed broadband Fourier-transform coherent anti-Stokes Raman scattering spectral microscopy. J Raman Spectrosc., 50, 1141-1146(2019).

    [14] D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52, 1289-1306(2006).

    [15] E. J. Candes, J. Romberg, T. Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52, 489-509(2006).

    [16] B. Kästner et al. Compressed sensing FTIR nano-spectroscopy and nano-imaging. Opt. Express, 26, 18115(2018).

    [17] J. M. Charsley et al. Compressive hyperspectral imaging in the molecular fingerprint band. Opt. Express, 30, 17340(2022).

    [18] K. Hiramatsu et al. High-throughput label-free molecular fingerprinting flow cytometry. Sci. Adv., 5, eaau0241(2019).

    [19] J. Gala de Pablo et al. High-throughput Raman flow cytometry and beyond. Acc. Chem. Res., 54, 2132-2143(2021).

    [20] H. Lin et al. Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion. Light Sci. Appl., 7, 17179-17179(2018).

    [21] H. K. Aggarwal, A. Majumdar. Hyperspectral image denoising using spatio-spectral total variation. IEEE Geosci. Remote Sens. Lett., 13, 442-446(2016).

    [22] J. P. Ogilvie et al. Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett., 31, 480(2006).

    [23] L. Condat. A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl., 158, 460-479(2013).

    [24] B. C. Vũ. A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math., 38, 667-681(2013).

    [25] T. M. James et al. Automated quantitative spectroscopic analysis combining background subtraction, cosmic ray removal, and peak fitting. Appl. Spectrosc., 67, 949-959(2013).

    [26] F. Soldevila et al. Fast compressive Raman bio-imaging via matrix completion. Optica, 6, 341(2019).

    [27] E. J. Candes, M. B. Wakin. An introduction to compressive sampling. IEEE Signal Process. Mag., 25, 21-30(2008).

    [28] M. Lindley et al. Ultrafast simultaneous Raman-fluorescence spectroscopy. Anal. Chem., 91, 15563-15569(2019).

    Shigekazu Takizawa, Kotaro Hiramatsu, Matthew Lindley, Julia Gala de Pablo, Shunsuke Ono, Keisuke Goda. High-speed hyperspectral imaging enabled by compressed sensing in time domain[J]. Advanced Photonics Nexus, 2023, 2(2): 026008
    Download Citation