• Photonics Research
  • Vol. 7, Issue 6, 647 (2019)
Yue Wang1, Hongchun Zhao1、2, Yancheng Li1、2, Fengfeng Shu1, Mingbo Chi1, Yang Xu1, and Yihui Wu1、*
Author Affiliations
  • 1State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1364/PRJ.7.000647 Cite this Article Set citation alerts
    Yue Wang, Hongchun Zhao, Yancheng Li, Fengfeng Shu, Mingbo Chi, Yang Xu, Yihui Wu. Mode splitting revealed by Fano interference[J]. Photonics Research, 2019, 7(6): 647 Copy Citation Text show less
    References

    [1] X.-F. Jiang, A. J. Qavi, S. H. Huang, L. Yang. Whispering gallery microsensors: a review(2018).

    [2] S. Subramanian, H. Y. Wu, T. Constant, J. Xavier, F. Vollmer. Label-free optical single-molecule micro-and nanosensors. Adv. Mater., 30, 1801246(2018).

    [3] G. P. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon., 9, 828-890(2017).

    [4] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [5] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mosset, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X.-X. Xue, A. M. Weiner, R. Morandotti. Micro-combs: a novel generation of optical sources. Phys. Rep., 729, 1-81(2018).

    [6] D. S. Weiss, V. Sandoghdar, J. Hare, V. S. Lefevre, J. M. Raimond, S. Haroche. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett., 20, 1835-1837(1995).

    [7] A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett., 99, 173603(2007).

    [8] J. G. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 4, 46-49(2009).

    [9] B. Stern, X. C. Ji, A. Dutt, M. Lipson. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 42, 4541-4544(2017).

    [10] A. Li, W. Bogaerts. Backcoupling manipulation in silicon ring resonators. Photon. Res., 6, 620-629(2018).

    [11] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [12] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [13] H. Jing, H. Lü, S. K. Özdemir, T. Carmon, F. Nori. Nanoparticle sensing with a spinning resonator. Optica, 5, 1424-1430(2018).

    [14] W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. D. Fan, L. Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor. Photon. Res., 6, A23-A30(2018).

    [15] L. He, S. K. Ozdemir, J. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 6, 428-432(2011).

    [16] B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, Y.-F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 111, 14657-14662(2014).

    [17] S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA, 111, E3836-E3844(2014).

    [18] M. Y. Ye, M. X. Shen, X. M. Lin. Ringing phenomenon based measurement of weak mode-coupling strength in an optical microresonator. Sci. Rep., 7, 17412(2017).

    [19] J. Knittel, T. G. McRae, K. H. Lee, W. P. Bowen. Interferometric detection of mode splitting for whispering gallery mode biosensors. Appl. Phys. Lett., 97, 123704(2010).

    [20] L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 25, 5616-5620(2013).

    [21] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [22] H. J. Goldwyn, K. C. Smith, J. A. Busche, D. J. Masiello. Mislocalization in plasmon-enhanced single-molecule fluorescence microscopy as a dynamical Young’s interferometer. ACS Photon., 5, 3141-3151(2018).

    [23] S. Simoncelli, Y. Li, E. Cortés, S. A. Maier. Imaging plasmon hybridization of Fano resonances viahot-electron-mediated absorption mapping. Nano Lett., 18, 3400-3406(2018).

    [24] N. Caselli, F. Intonti, F. L. China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. H. Li, E. H. Linfield, F. Pagliano, A. Fiore, M. Gurioli. Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes. Light: Sci. Appl., 4, e326(2015).

    [25] N. Caselli, F. Intonti, F. L. China, F. Biccari, F. Riboli, A. Gerardino, L. H. Li, E. H. Linfield, F. Pagliano, A. Fiore, M. Gurioli. Generalized Fano lineshapes reveal exceptional points in photonic molecules. Nat. Commun., 9, 396(2018).

    [26] P. Willke, W. Paul, F. D. Natterer, K. Yang, Y. Bae, T. Choi, J. Fernández-Rossier, A. J. Heinrich, C. P. Lutz. Probing quantum coherence in single-atom electron spin resonance. Sci. Adv., 4, eaaq1543(2018).

    [27] J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen. Back-scatter based whispering gallery mode sensing. Sci. Rep., 3, 2974(2013).

    [28] X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, Q. H. Gong. Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator. Phys. Rev. A, 83, 023803(2011).

    [29] Y. L. Xu, S. J. Tang, X. C. Yu, Y. L. Chen, D. Q. Yang, Q. H. Gong, Y. F. Xiao. Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity. Phys. Rev. A, 97, 063828(2018).

    [30] Y. C. Liu, B. B. Li, Y. F. Xiao. Electromagnetically induced transparency in optical microcavities. Nanophotonics, 6, 789-811(2017).

    [31] K. Zhang, Y. Wang, Y. H. Wu. Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator. Opt. Lett., 42, 2956-2959(2017).

    [32] X. W. Liu, A. W. Bruch, Z. Gong, J. J. Lu, J. B. Surya, L. Zhang, J. X. Wang, J. C. Yan, H. X. Tang. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica, 5, 1279-1282(2018).

    [33] L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. H. Gong, M. Lončar, Y. F. Xiao. High-Q chaotic lithium niobate microdisk cavity. Opt. Lett., 43, 2917-2920(2018).

    [34] G. Lin, R. Henriet, A. Coillet, M. Jacquot, L. Furfaro, G. Cibiel, L. Larger, Y. K. Chembo. Dependence of quality factor on surface roughness in crystalline whispering-gallery mode resonators. Opt. Lett., 43, 495-498(2018).

    [35] A. E. Shitikov, I. A. Bilenko, N. M. Kondratiev, V. E. Lobanov, A. Markosyan, M. L. Gorodetsky. Billion Q-factor in silicon WGM resonators. Optica, 5, 1525-1528(2018).

    [36] R. B. Wu, Y. Zheng, Q. M. Chen, Y. X. Liu. Synthesizing exceptional points with three resonators. Phys. Rev. A, 98, 033817(2018).

    [37] R. J. Thompson, G. Rempe, H. J. Kimble. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett., 68, 1132-1135(1992).

    [38] M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. Di Giuseppe, D. Vitali. Normal-mode splitting in a weakly coupled optomechanical system. Phys. Rev. Lett., 120, 073601(2018).

    Yue Wang, Hongchun Zhao, Yancheng Li, Fengfeng Shu, Mingbo Chi, Yang Xu, Yihui Wu. Mode splitting revealed by Fano interference[J]. Photonics Research, 2019, 7(6): 647
    Download Citation