• Journal of Inorganic Materials
  • Vol. 37, Issue 7, 724 (2022)
Cheng CHENG, Jianbo LI, Zhen TIAN, Pengjiang WANG, Huijun KANG*, and Tongmin WANG
Author Affiliations
  • Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
  • show less
    DOI: 10.15541/jim20210631 Cite this Article
    Cheng CHENG, Jianbo LI, Zhen TIAN, Pengjiang WANG, Huijun KANG, Tongmin WANG. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724 Copy Citation Text show less
    References

    [1] F L BAKKER, A SLACHTER, J P ADAM et al. Interplay of peltier and seebeck effects in nanoscale nonlocal spin valves. Physical Review Letters(2010).

    [2] L E BELL. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 1457-1461(2008).

    [3] J B LI, J WANG, J F LI et al. Broadening the temperature range for high thermoelectric performance of bulk polycrystalline strontium titanate by controlling the electronic transport properties. Journal of Materials Chemistry C, 7594-7603(2018).

    [4] H J KANG, X Y ZHANG, Y X WANG et al. Effect of rare-earth variable-valence element Eu doping on thermoelectric property of BiCuSeO. Journal of Inorganic Materials, 1041-1046(2020).

    [5] G J SNYDER, E S TOBERER. Complex thermoelectric materials. Nature Materials, 105-114(2008).

    [6] G TAN, L D ZHAO, M G KANATZIDIS. Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 12123-12149(2016).

    [7] D M ROWE. CRC Handbook of Thermoelectrics.

    [8] C C ZHANG, X WANG, L M PENG. Thermoelectric transport characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y systems via stepwise addition of dual components. Journal of Inorganic Materials, 936-942(2021).

    [9] R J MEHTA, Y ZHANG, C KARTHIK et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nature Materials, 233-240(2012).

    [10] K BISWAS, J HE, I D BLUM et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 414-418(2012).

    [11] A SARAMAT, G SVENSSON, A E C PALMQVIST et al. Large thermoelectric figure of merit at high temperature in Czochralski- grown clathrate Ba8Ga16Ge30. Journal of Applied Physics(2006).

    [12] J L LAN, Y H LIN, Y LIU et al. High thermoelectric performance of nanostructured In2O3-based ceramics. Journal of the American Ceramic Society, 2465-2469(2012).

    [13] P D C KING, T D VEAL, F FUCHS et al. Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Physical Review B(2009).

    [14] E GUILMEAU, D BERARDAN, C SIMON et al. Tuning the transport and thermoelectric properties of In2O3 bulk ceramics through doping at in-site. Journal of Applied Physics(2009).

    [15] D R MILLER, S A AKBAR, P A MORRIS. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors and Actuators B-Chemical, 250-272(2014).

    [16] I HAMBERG, C G GRANQVIST, K F BERGGREN et al. Band- gap widening in heavily Sn-doped In2O3. Physical Review B, 3240-3249(1984).

    [17] M MAREZIO. Refinement of the crystal structure of In2O3 at two wavelengths. Acta Crystallographica, 723-728(1966).

    [18] K DU, S P DENG, N QI et al. Ultralow thermal conductivity in In2O3 mediated by porous structures. Microporous and Mesoporous Materials(2019).

    [19] Y LIU, W XU, D B LIU et al. Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression. Physical Chemistry Chemical Physics, 11229-11233(2015).

    [20] B CHENG, Y H LIN, J L LAN et al. Preparation of In2O3-Sr2RuErO6 composite ceramics by the spark plasma sintering and their thermoelectric performance. Journal of Materials Science & Technology, 1165-1168(2011).

    [21] O J GREGORY, M AMANI, G C FRALICK. Thermoelectric power factor of In2O3:Pd nanocomposite films. Applied Physics Letters(2011).

    [22] J LÜ, T KAKO, Z G ZOU et al. Band structure design and photocatalytic activity of In2O3/N-InNbO4 composite. Applied Physics Letters(2009).

    [23] J WANG, J B LI, H Y YU et al. Enhanced thermoelectric performance in n-type SrTiO3/SiGe composite. ACS Applied Materials Interfaces, 2687-2694(2020).

    [24] Q F CHEN, X X WANG, Z S WU et al. Recent advances in SnSe- based thermoelectric materials. Chinese Journal of Rare Metals, 1316-1324(2020).

    [25] Y X YANG, Y H WU, Q ZHANG et al. Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Metals, 887-894(2020).

    [26] M ZHOU, X T ZU, K SUN et al. Enhanced photocatalytic hydrogen generation of nano-sized mesoporous InNbO4 crystals synthesized via a polyacrylamide gel route. Chemical Engineering Journal, 99-108(2017).

    [27] S BADRINARAYANAN, A B MANDALE. Oxygen interaction with ternary chalcogenide: an electron spectroscopy for chemical analysis study of AgInTe2. Journal of Materials Research, 1091-1098(1995).

    [28] D CHATTERJI, R W VEST. Thermodynamic properties of system indium-oxygen. Journal of the American Ceramic Society, 575-578(1972).

    [29] B ZHANG, N BAO, T WANG et al. High-performance room temperature NO2 gas sensor based on visible light irradiated In2O3 nanowires. Journal of Alloys and Compounds(2021).

    [30] B ZHANG, M CHENG, G LIU et al. Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sensors and Actuators B: Chemical, 387-399(2018).

    [31] J B LI, Y X WANG, X YANG et al. Processing bulk insulating CaTiO3 into a high-performance thermoelectric material. Chemical Engineering Journal(2022).

    [32] D YANG, X SU, J LI et al. Blocking ion migration stabilizes the high thermoelectric performance in Cu2Se composites. Advanced Materials(2020).

    [33] A AHMAD, M HUSSAIN, Y H LIN. Synergistically improving the thermoelectric performance of In2O3via a dual-doping and nanostructuring approach. Materials Research Express(2019).

    [34] A AHMAD, M HUSSAIN, Z F ZHOU et al. Thermoelectric performance enhancement of vanadium doped n-type In2O3 ceramics via carrier engineering and phonon suppression. ACS Applied Energy Materials, 1552-1558(2020).

    [35] B CHENG, H FANG, J L LAN et al. Thermoelectric performance of Zn and Ge co-doped In2O3 fine-grained ceramics by the spark plasma sintering. Journal of the American Ceramic Society, 2279-2281(2011).

    [36] Y LIU, Y H LIN, J L LAN et al. Effect of transition-metal cobalt doping on the thermoelectric performance of In2O3 ceramics. Journal of the American Ceramic Society, 2938-2941(2010).

    [37] D BERARDAN, E GUILMEAU, A MAIGNAN et al. In2O3:Ge, a promising n-type thermoelectric oxide composite. Solid State Communications, 97-101(2008).

    [38] Y LIU, Y H LIN, W XU et al. High-temperature transport property of In2-xCexO3 (0≤x≤0.10) fine grained ceramics. Journal of the American Ceramic Society, 2568-2572(2012).

    [39] D T MORELLI, J P HEREMANS, G A SLACK. Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Physical Review B(2002).

    Cheng CHENG, Jianbo LI, Zhen TIAN, Pengjiang WANG, Huijun KANG, Tongmin WANG. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724
    Download Citation