• Infrared and Laser Engineering
  • Vol. 48, Issue 4, 422001 (2019)
Wu Shaoqiang*, Feng Xianghua, Wei Zhengtong, and Wu Tianhao
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/irla201948.0422001 Cite this Article
    Wu Shaoqiang, Feng Xianghua, Wei Zhengtong, Wu Tianhao. Diffraction field simulation of polymer waveguide grating coupler[J]. Infrared and Laser Engineering, 2019, 48(4): 422001 Copy Citation Text show less
    References

    [1] Park S, Matic A, Garg K, et al. When simpler data does not imply less information: a study of user profiling scenarios with constrained view of mobile HTTP(S) traffic[J]. ACM Transactions on the Web, 2017, 12(2): 0000001.

    [2] Hung J C, Yi G. Advances in next era cloud-empowered computing and techniques[J]. Journal of Supercomputing, 2017, 73(2): 1-8.

    [3] Tan Xiaodi. Optical data storage technologies for big data era [J]. Infrared and Laser Engineering, 2016, 45(9): 0935001. (in Chinese)

    [4] Kilper D C, Atkinson G, Korotky S K, et al. Power trends in communication networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(2): 275-284.

    [5] Guenach M, Jacobs L, Kozicki B, et al. Performance analysis of pre-equalized multilevel partial response modulation for high-speed electrical interconnects[J]. Computers & Electrical Engineering, 2017, 58(C): 30-48.

    [6] Kachris C, Kanonakis K, Tomkos I. Optical interconnection networks in data centers: recent trends and future challenges[J]. Communications Magazine IEEE, 2013, 51(9): 39-45.

    [7] Pitwon R, Wang K, Yamauchi A, et al. Competitive evaluation of planar embedded glass and polymer waveguides in data center environments[J]. Applied Sciences, 2017, 7(9): 940.

    [8] Jing Shimei, Zhang Xuanyu, Liang Jufa, et al. Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics [J]. Chinese Optics, 2017, 10(4): 449-454. (in Chinese)

    [9] Liang Jufa, Jing Shimei, Meng Aihua, et al. Integrated optical sensor based on a FBG in parallel with a LPG [J]. Chinese Optics, 2016, 9(3): 329-334. (in Chinese)

    [10] Zhang Rui, Pan Mingzhong, Yang Jin, et al. Optical system of echelle spectrometer based on DMD [J]. Optics and Precision Engineering, 2017, 25(12): 2994-3000. (in Chinese)

    [11] Wang Yongjin, Zheng Fenghua, Gao Xumin, et al. Freestanding non-periodic GaN gratings in visible wavelength region [J]. Optics and Precision Engineering, 2017, 25(12): 3020-3026. (in Chinese)

    [12] Taillaert D, Bogaerts W, Bienstman P, et al. An out-of-plane

         grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers[J]. IEEE Journal of Quantum Electronics, 2002, 38(7): 949-955.

    [13] Taillaert D, Bogaerts W, Baets R. Efficient coupling between

         submicron SOI-waveguides and single-mode fibers[C]//Proceedings of Symposium IEEE/LEOS Benelux Chapter, 2003: 289-292.

    [14] Bogaerts W, Taillaert D, Luyssaert B, et al. Basic structures for photonic integrated circuits in Silicon-on-insulator.[J]. Optics Express, 2004, 12(8): 1583-1591.

    [15] input/output coupler for small silicon photonic devices[J]. Optics Express, 2005, 13(19): 7374-7379.

         Masanovic G, Reed G, Headley W, et al. A high efficiency

    [16] efficient grating couplers between optical fiber and nanophotonic waveguides[J]. Journal of Lightwave Technology, 2007, 25(1): 151-156.

         Laere F V, Roelkens G, Ayre M, et al. Compact and highly

    [17] Vermeulen D, Thourhout D V, Sleeckx E, et al. Highly efficient grating coupler between optical fiber and silicon photonic circuit[C]//2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference, 2009: 1-2.

    [18] Chen X, Li C, Fung C K Y, et al. Apodized waveguide grating couplers for efficient coupling to optical fibers[J]. IEEE Photonics Technology Letters, 2010, 22(15): 1156-1158.

    [19] Mekis A, Gloeckner S, Masini G, et al. A grating coupler enabled CMOS photonics platform[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(3): 597-608.

    [20] Mekis A, Abdalla S, Foltz D, et al. A CMOS photonics platform for high-speed optical interconnects[C]//Photonics Conference. IEEE, 2012: 356-357.

    [21] Can Z, Jinghua S, Xi X, et al. High efficiency grating coupler for coupling between single-mode fiber and SOI waveguides[J]. Chinese Physics Letters, 2013, 30(1): 14207-14210.

    [22] Zaoui W S, Kunze A, Vogel W, et al. Bridging the gap between optical fibers and silicon photonic integrated circuits[J]. Optics Express, 2014, 22(2): 1277-1286.

    [23] Ji Shuying, Kong Weijin, Li Na, et al. 800 nm subwavelength sandwich metal polarization beam splitting grating[J]. Infrared and Laser Engineering, 2017, 46(8): 0820002.

    [24] Tamir T, Peng S T. Analysis and design of grating couplers[J]. Applied Physics, 1977, 14(3): 235-254.

    [25] Harris J H, Winn R K, Dalgoutte D G. Theory and design of periodic couplers[J]. Applied Optics, 1972, 11(10): 2234.

    [26] Wu Y. Equivalent current theory of optical waveguide coupling[J]. Journal of China Institute of Communications, 1982, 4(10): 1902-1910.

    [27] Ji Jiarong, Feng Ying. A Course in Advanced Optics [M]. Beijing: Science Press, 2008. (in Chinese)

    Wu Shaoqiang, Feng Xianghua, Wei Zhengtong, Wu Tianhao. Diffraction field simulation of polymer waveguide grating coupler[J]. Infrared and Laser Engineering, 2019, 48(4): 422001
    Download Citation