• Acta Optica Sinica
  • Vol. 41, Issue 13, 1306006 (2021)
Jianhua Cao, Shengtao Lin, Zinan Wang*, Bing Han, and Yunjiang Rao
Author Affiliations
  • Key Laboratory of Optical Fiber Sensing and Communications, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
  • show less
    DOI: 10.3788/AOS202141.1306006 Cite this Article Set citation alerts
    Jianhua Cao, Shengtao Lin, Zinan Wang, Bing Han, Yunjiang Rao. Design and Implementation for Ultra-Long-Distance Multi-Point Sensing System Based on Random Fiber Laser[J]. Acta Optica Sinica, 2021, 41(13): 1306006 Copy Citation Text show less
    References

    [1] Lai W C, Ma P F, Liu W et al. 550-W single-frequency all-fiber amplifier with near-diffraction-limited beam quality[J]. Chinese Journal of Lasers, 47, 0415001(2020).

    [2] Pan W W, Zhou J Q, Zhang L et al. Research advances in ultrafast Raman fiber lasers[J]. Chinese Journal of Lasers, 46, 0508016(2019).

    [3] Tan T, Yuan Z Y, Chen Y F et al. Graphene-based fiber functional sensors and laser devices[J]. Laser & Optoelectronics Progress, 56, 170613(2019).

    [4] Turitsyn S K, Babin S A, Churkin D V et al. Random distributed feedback fibre lasers[J]. Nature Photonics, 4, 231-235(2010).

    [5] Zhang L, Jiang H W, Yang X Z et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser[J]. Optics Letters, 41, 215-218(2016).

    [6] Dong J Y, Zhang L, Jiang H W et al. High order cascaded Raman random fiber laser with high spectral purity[J]. Optics Express, 26, 5275-5280(2018). http://europepmc.org/abstract/MED/29529732

    [7] Han B, Rao Y J, Wu H et al. Low-noise high-order Raman fiber laser pumped by random lasing[J]. Optics Letters, 45, 5804-5807(2020).

    [8] Zhang L, Jiang H W, Yang X Z et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 7, 42611(2017).

    [9] Yin G L, Saxena B, Bao X Y. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber[J]. Optics Express, 19, 25981-25989(2011).

    [10] Demiguel-Soto V, Bravo M, Lopez-Amo M. Fully switchable multiwavelength fiber laser assisted by a random mirror[J]. Optics Letters, 39, 2020-2023(2014).

    [11] Xu Y P, Zhang L, Chen L et al. Single-mode SOA-based 1 kHz-linewidth dual-wavelength random fiber laser[J]. Optics Express, 25, 15828-15837(2017).

    [12] Pang M, Bao X Y, Chen L et al. Frequency stabilized coherent Brillouin random fiber laser: theory and experiments[J]. Optics Express, 21, 27155-27168(2013).

    [13] Wang Z N, Wu H, Fan M Q et al. High power random fiber laser with short cavity length: theoretical and experimental investigations[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 10-15(2015).

    [14] Xu J M, Huang L, Jiang M et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output[J]. Photonics Research, 5, 350-354(2017).

    [15] Xu J M, Huang L, Ye J et al. Power scalability of a linearly-polarized narrowband random fiber laser in an all-fiber MOPA structure with 0.1 nm linewidth[J]. Laser Physics Letters, 14, 095101(2017).

    [16] Balaswamy V, Ramachandran S, Supradeepa V R. High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning[J]. Optics Express, 27, 9725-9732(2019).

    [17] Zhang L, Dong J Y, Feng Y. High-power and high-order random Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).

    [18] Ma R, Wang Z, Zhang H H et al. Imaging through opacity using a near-infrared low-spatial-coherence fiber light source[J]. Optics Letters, 45, 3816-3819(2020).

    [19] Ma R, Li J Q, Guo J Y et al. High-power low spatial coherence random fiber laser[J]. Optics Express, 27, 8738-8744(2019).

    [20] Song J X, Wu H S, Ye J et al. High power linearly polarized Raman fiber laser with stable temporal output[J]. Photonic Sensors, 9, 43-48(2019).

    [21] Xu J M, Ye J, Xiao H et al. In-band pumping avenue based high power superfluorescent fiber source with record power and near-diffraction-limited beam quality[J]. High Power Laser Science and Engineering, 6, e46(2018).

    [22] Jia X H, Rao Y J, Peng F et al. Random-lasing-based distributed fiber-optic amplification[J]. Optics Express, 21, 6572-6577(2013). http://labs.europepmc.org/abstract/MED/23482228

    [23] Fu Y, Wang Z N, Zhu R C et al. Ultra-long-distance hybrid BOTDA/Ф-OTDR[J]. Sensors, 18, 976(2018). http://europepmc.org/abstract/MED/29587407

    [24] Wang Z N, Rao Y J, Wu H et al. Long-distance fiber-optic point-sensing systems based on random fiber lasers[J]. Optics Express, 20, 17695-17700(2012).

    [25] Fernandez-Vallejo M, Bravo M, Lopez-Amo M. Ultra-long laser systems for remote fiber Bragg gratings arrays interrogation[J]. IEEE Photonics Technology Letters, 25, 1362-1364(2013). http://ieeexplore.ieee.org/document/6522898

    [26] Wang Z N, Sun W, Wu H et al. Long-distance random fiber laser point sensing system incorporating active fiber[J]. Optics Express, 24, 22448-22453(2016). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-24-20-22448

    [27] Pinto A M R, Lopez-Amo M, Kobelke J et al. Temperature fiber laser sensor based on a hybrid cavity and a random mirror[J]. Journal of Lightwave Technology, 30, 1168-1172(2012).

    [28] Demiguel-Soto V, Leandro D, Lopez-Amo M. Ultra-long (290 km) remote interrogation sensor network based on a random distributed feedback fiber laser[J]. Optics Express, 26, 27189-27200(2018). http://www.researchgate.net/publication/328191444_Ultra-long_290_km_remote_interrogation_sensor_network_based_on_a_random_distributed_feedback_fiber_laser/download

    [29] Churkin D V. El-Taher A E, Vatnik I D, et al. Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser[J]. Optics Express, 20, 11178-11188(2012).

    [30] Vatnik I D, Churkin D V. Modeling of the spectrum in a random distributed feedback fiber laser within the power balance modes[J]. Proceedings of SPIE, 9135, 91351Z(2014). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1867889

    [31] Smirnov S V, Churkin D V. Modeling of spectral and statistical properties of a random distributed feedback fiber laser[J]. Optics Express, 21, 21236-21241(2013).

    [32] Turitsyn S K, Babin S A, Churkin D V et al. Random distributed feedback fibre lasers[J]. Physics Reports, 542, 133-193(2014).

    Jianhua Cao, Shengtao Lin, Zinan Wang, Bing Han, Yunjiang Rao. Design and Implementation for Ultra-Long-Distance Multi-Point Sensing System Based on Random Fiber Laser[J]. Acta Optica Sinica, 2021, 41(13): 1306006
    Download Citation