• Journal of Inorganic Materials
  • Vol. 36, Issue 5, 451 (2021)
Xiang ZHANG1, Wenjie LI2, Lebin WANG1, Xi CHEN1, Jiupeng ZHAO2, and Yao LI1、*
Author Affiliations
  • 11. Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
  • 22. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • show less
    DOI: 10.15541/jim20200465 Cite this Article
    Xiang ZHANG, Wenjie LI, Lebin WANG, Xi CHEN, Jiupeng ZHAO, Yao LI. Reflective Property of Inorganic Electrochromic Materials[J]. Journal of Inorganic Materials, 2021, 36(5): 451 Copy Citation Text show less
    References

    [1] S DEB. A novel electrophotographic system. Applied Optics, 8, 192-195(1969).

    [2] X ZHANG, W J LI, Y LI et al. Research progress of inorganic all-solid-state electrochromic devices. Materials Science and Technology, 28, 140-149(2020).

    [3] X CHEN, S L DOU, W J LI et al. All solid state electrochromic devices based on the LiF electrolyte. Chemical Communications, 56, 5018-5021(2020).

    [4] W J LI, X ZHANG, X CHEN et al. Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chemical Engineering Journal, 398, 125628(2020).

    [5] B GREER. Control System for Electrochromic Devices. U.S. Patent 7277215(2007).

    [6] Z WANG, A PRADHAN, R ROZBICKI. Electrochromic Devices. U.S. Patent 8764951(2014).

    [7] Q F XU, J LI, J ZHAO. A Kind of Electrochromic Glass. China, CN204595399U(2015).

    [8] Y M ZHAO, X ZHANG, X CHEN et al. Preparation of WO3 films with controllable crystallinity for improved near-Infrared electrochromic performances. ACS Sustainable Chemistry & Engineering, 8, 11658-11666(2020).

    [9] X H XIA, J P TU, J ZHANG et al. Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochimica Acta, 53, 5721-5724(2008).

    [10] W J LI, X ZHANG, X CHEN et al. Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices. Electrochimica Acta, 355, 136817(2020).

    [11] D ZHOU, D XIE, X H XIA et al. All-solid-state electrochromic devices based on WO3||NiO films: material developments and future applications. Science China Chemistry, 60, 3-12(2017).

    [12] M F SHENG, L P ZHANG, L J WEST et al. Multicolor electrochromic dye-doped liquid crystal yolk-shell microcapsules. ACS Applied Materials & Interfaces, 12, 29728-29736(2020).

    [13] R J MORTIMER, A L DYER, J R REYNOLDS. Electrochromic organic and polymeric materials for display applications. Displays, 27, 2-18(2006).

    [14] H T YU, S SHAO, L J YAN et al. Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 4, 2269-2273(2016).

    [15] P CHANDRASEKHAR, B J ZAY, G C BIRUR et al. Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices. Advanced Functional Materials, 12, 95-103(2002).

    [16] N A CHERNOVA, M ROPPOLO, A C DILLON et al. Layered vanadium and molybdenum oxides: batteries and electrochromics. Journal of Materials Chemistry, 19, 2526-2552(2009).

    [17] Z Q TONG, N LI, H M LV et al. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Solar Energy Materials and Solar Cells, 146, 135-143(2016).

    [18] G F ZHAO, W Q WANG, X L WANG et al. A multicolor electrochromic film based on a SnO2/V2O5 core/shell structure for adaptive camouflage. Journal of Materials Chemistry C, 7, 5702-5709(2019).

    [19] X ZHANG, W J LI, X CHEN et al. Inorganic all-solid-state electrochromic devices with reversible color change between yellow-green and emerald green. Chemical Communications, 56, 10062-10065(2020).

    [20] W ZHANG, H Z LI, W W YU et al. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light: Science & Applications, 9, 121(2020).

    [21] A BLANCO, E CHOMSKI, S GRABTCHAK et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 405, 437-440(2000).

    [22] E REDEL, J MLYNARSKI, J MOIR et al. Electrochromic Bragg mirror: ECBM. Advanced Materials, 24, 265-269(2012).

    [23] L L XIAO, Y LV, J LIN et al. WO3-based electrochromic distributed Bragg reflector: toward electrically tunable microcavity luminescent device. Advanced Optical Materials, 6, 1-8(2018).

    [24] Z WANG, X Y WANG, S CONG et al. Towards full-colourtunability of inorganic electrochromic devices using ultracompact Fabry-Perot nanocavities. Nature Communications, 11, 1-9(2020).

    [25] S ARAKI, K NAKAMURA, K KOBAYASHI et al. Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black. Advanced Materials, 24, 122-126(2012).

    [26] A TSUBOI, K NAKAMURA, N KOBAYASHI et al. A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Advanced Materials, 25, 3197-3201(2013).

    [27] N LI, P WEI, L YU et al. Dynamically switchable multicolor electrochromic films. Small, 15, 1-7(2019).

    [28] T D SWANSON, G C BIRUR. NASA thermal control technologies for robotic spacecraft. Applied Thermal Engineering, 23, 1055-1065(2003).

    [29] H LI, K XIE, Y PAN et al. Variable emissivity infrared electrochromic device based on polyaniline conducting polymer. Synthetic Metals, 159, 1386-1388(2009).

    [30] C LOUET, S CANTIN, J P DUDON et al. A comprehensive study of infrared reflectivity of poly (3, 4-ethylenedioxythiophene) model layers with different morphologies and conductivities. Solar Energy Materials and Solar Cells, 143, 141-151(2015).

    [31] L P ZHANG, B WANG, X B LI et al. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. Journal of Materials Chemistry C, 7, 9878-9891(2019).

    [32] F A MODINE, D Y SMITH. Approximate formulas for the amplitude and the phase of the infrared reflectance of a conductor. Journal of The Optical Society of America A-Optics Image Science and Vision, 1, 1171-1174(1984).

    [33] J S HALE, J A WOOLLAM. Prospects for IR emissivity control using electrochromic structures. Thin Solid Films, 339, 174-180(1999).

    [34] E B FRANKE, C L TRIMBLE, M SCHUBERT et al. All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region. Applied Physics Letters, 77, 930-932(2000).

    [35] A BESSIERE, C MARCEL, M MORCRETTE et al. Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control. Journal of Applied Physics, 91, 1589-1594(2002).

    [36] K SAUVET, L SAUQUES, A ROUGIER et al. IR electrochromic WO3 thin films: from optimization to devices. Solar Energy Mater. Solar Cells, 93, 2045-2049(2009).

    [37] K SAUVET, L SAUQUES, A ROUGIER et al. Electrochromic properties of WO3 as a single layer and in a full device: from the visible to the infrared. Journal of Physics and Chemistry of Solids, 71, 696-699(2010).

    [38] N KISLOV, H GROGER, R PONNAPPAN. All-solid-state electrochromic variable emittance coatings for thermal management in space. AIP Conference Proceedings, 654, 172-179(2003).

    [39] N KISLOV, H GROGER, R PONNAPPAN et al. Electrochromic variable emittance devices on silicon wafer for spacecraft thermal control. AIP Conference Proceedings, 699, 112-118(2004).

    [40] H DEMIRYONT, D MOOREHEAD. Electrochromic emissivity modulator for spacecraft thermal management. Solar Energy Materials and Solar Cells, 93, 2075-2078(2009).

    [41] Y S HUANG, Y Z ZHANG, X T ZENG et al. Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulation characteristics. Applied Surface Science, 202, 104-109(2002).

    [42] A L LARSSON, G A NIKLASSON. Infrared emittance modulation of all-thin-film electrochromic devices. Materials Letters, 58, 2517-2520(2004).

    [43] X ZHANG, Y L TIAN, W J LI et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Solar Energy Materials and Solar Cells, 200, 109916(2019).

    [44] O SALIHOGLU, H B UZLU, O YAKAR et al. Graphene-based adaptive thermal camouflage. Nano Letters, 18, 4541-4548(2018).

    [45] J MANDAL, S DU, M DONTIGNY et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Advanced Functional Materials, 28, 1-8(2018).

    Xiang ZHANG, Wenjie LI, Lebin WANG, Xi CHEN, Jiupeng ZHAO, Yao LI. Reflective Property of Inorganic Electrochromic Materials[J]. Journal of Inorganic Materials, 2021, 36(5): 451
    Download Citation