• Opto-Electronic Engineering
  • Vol. 44, Issue 2, 152 (2017)
[in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2, and [in Chinese]1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.02.003.1 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research progress in applications of LSPR biosensor for clinical medicine detection[J]. Opto-Electronic Engineering, 2017, 44(2): 152 Copy Citation Text show less
    References

    [1] Endo T, Kerman K, Nagatani N, et al. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core shell structured nanoparticle layer nanochip[J]. Analytical Chemistry, 2006, 78(18): 6465–6475.

    [2] Cantale V, Simeone F C, Gambari R, et al. Gold nano-islands on FTO as plasmonic nanostructures for biosensors[J]. Sensors and Actuators B: Chemical, 2011, 152(2): 206–213.

    [3] Haynes C L, Van Duyne R P. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics[J]. The Journal of Physical Chemistry B, 2001, 105(24): 5599–5611.

    [4] Haes A J, Van Duyne R P. A unified view of propagating and localized surface plasmon resonance biosensors[J]. Analyt-ical and Bioanalytical Chemistry, 2004, 379(7–8): 920–930.

    [5] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007, 58(1): 267–297.

    [6] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685–1706.

    [7] Haes A J, Van Duyne R P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the lo-calized surface Plasmon resonance spectroscopy of trian-gular silver nanoparticles[J]. Journal of the American Chemical Society, 2002, 124(35): 10596–10604.

    [8] Englebienne P. Use of colloidal gold surface plasmon reso-nance peak shift to infer affinity constants from the interac-tions between protein antigens and antibodies specific for single or multiple epitopes[J]. The Analyst, 1998, 123(7): 1599–1603.

    [9] Kreuzer M P, Quidant R, Salvador J P, et al. Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol[J]. Analsytical and Bioanalytical Chemistry, 2008, 391(5): 1813–1820.

    [10] Grabar K C, Freeman R G, Hommer M B, et al. Preparation and Characterization of Au Colloid Monolayers[J]. Analytical Che-mistry, 1995, 67(4): 735–743.

    [11] Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a sur-face[J]. Analytical Chemistry, 2002, 74(3): 504–509.

    [12] Sherry Leif J, Jin Rongchao, Mirkin Chad A, et al. Localized surface Plasmon resonance spectroscopy of single silver triangular nanoprisms[J]. Nano Letters, 2006, 6(9): 2060–2065.

    [13] Chan George H, Zhao Jing, Hicks Erin M, et al. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography[J]. Nano Letters, 2007, 7(7): 1947–1952.

    [14] Chan George H, Zhao Jing, Schatz George C, et al. Localized surface Plasmon resonance spectroscopy of triangular alu-minum nanoparticles[J]. The Journal of Physical Chemistry C, 2008, 112(36): 13958–13963.

    [15] Haes A J, Van Duyne R P. Nanoscale optical biosensors based on localized surface plasmon resonance spectrosco-py[J]. Proceedings of SPIE, 2003, 5221: 47–58.

    [16] Haes Amanda, Chang Lei, Klein William L, et al. Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor[J]. Journal of the American Chemical Society, 2005, 127(7): 2264–2271.

    [17] Riboh J C, Haes A J, McFarland A D, et al. A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion[J]. The Journal of Physical Chemistry B, 2003, 107(8): 1772–1780.

    [18] Ruemmele J A, Hall W P, Ruvuna L K, et al. A localized surface Plasmon resonance imaging instrument for multiplexed bio-sensing[J]. Analytical Chemistry, 2013, 85(9): 4560-4566.

    [19] Truong Phuoc Long, Cao Cuong, Park Sungho, et al. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor[J]. Lab on a Chip, 2011, 11(15): 2591–2597.

    [20] Yamamichi J, Ojima T, Yurugi K, et al. Single-step, label-free quantification of antibody in human serum for clinical appli-cations based on localized surface plasmon resonance[J]. Nanomedicine, 2011, 7(6): 889–895.

    [21] Lee Jin Ho, Kim Byung chan, Oh Byung Keum, et al. Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1[J]. Nanomedicine, 2013, 9(7): 1018–1026.

    [22] Yoo S Y, Kim D K, Park T J, et al. Detection of the most common corneal dystrophies caused by BIGH3 gene point mutations using a multispot gold-capped nanoparticle array chip[J]. Analytical Chemistry, 2010, 82(4): 1349–1357.

    [23] Tang Liang, Casas Justin. Quantification of cardiac bi-omarkers using label-free and multiplexed gold nanorod bi-oprobes for myocardial infarction diagnosis[J]. Biosensors and Bioelectronics, 2014, 61: 70–75.

    [24] Lin Hsing Ying, Huang C S, Liu Yu Chia, et al. Multiplex fiber-optic biosensor using multiple particle Plasmon reso-nances[J]. Proceedings of SPIE, 2012, 8351: 83512S.

    [25] Aimovi S S, Ortega M A, Sanz V, et al. LSPR chip for parallel, rapid and sensitive detection of cancer markers in serum[J]. Nano Letters, 2014, 14(5): 2636–2641.

    [26] Lai Ting, Hou Qiannan, Yang Huan, et al. Clinical application of a novel sliver nanoparticles biosensor based on localized surface Plasmon resonance for detecting the microalbumi-nuria[J]. Acta Biochimica et Biophysica Sinica, 2010, 42(11): 787–792.

    [27] Ferenczy A, Franco E. Persistent human papillomavirus infection and cervical neoplasia[J]. The Lancet Oncology, 2002, 3(1): 11–16.

    [28] Parkin D M, Bray F, Ferlay J, et al. Global cancer statistics 2002[J]. CA: A Cancer Journal for Clinicians, 2005, 55(2): 74–108.

    [29] Gadducci A, Tana R, Cosio S, et al. The serum assay of tumour markers in the prognostic evaluation, treatment mon-itoring and follow-up of patients with cervical cancer: a review of the literature[J]. Critical Reviews in Oncology/Hematology, 2008, 66(1): 10–20.

    [30] Esajas M D, Duk J M, de Bruijn H W A, et al. Clinical value of routine serum squamous cell carcinoma antigen in follow-up of patients with early-stage cervSical cancer[J]. Journal of Clin-ical Oncology, 2001, 19(19): 3960–3966.

    [31] Zhao Qianying, Duan Ruiqi, Yuan Jialing, et al. A reusable localized surface plasmon resonance biosensor for quantita-tive detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array[J]. International Journal of Nanomedicine, 2014, 9: 1097–1104.

    [32] Shah C A, Lowe K A, Paley P, et al. Influence of ovarian cancer risk status on the diagnostic performance of the serum biomarkers mesothelin, HE4, and CA125[J]. Cancer Epide-miology Biomarkers & Prevention, 2009, 18(5): 1365–1372.

    [33] Hellstrom I, Heagerty P J, Swisher E M, et al. Detection of the HE4 protein in urine as a biomarker for ovarian neoplasms[J]. Cancer Letters, 2010, 296(1): 43–48.

    [34] Anastasi E, Giovanna M G, Viggiani V, et al. HE4: a new potential early biomarker for the recurrence of ovarian can-cer[J]. Tumor Biology, 2010, 31(2): 113–119.

    [35] Yurkovebtsky Z, Skates S, Lomakin A, et al. Development of a multimarker assay for early detection of ovarian cancer[J]. Journal of Clinical Oncology, 2010, 28(13): 2159–2166.

    [36] Yuan Jialing, Duan Ruiqi, Yang Huan, et al. Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on local-ized surface plasmon resonance[J]. International Journal of Nanomedicine, 2012, 7: 2921–2928.

    [37] Yamaguchi A, Kurosaka Y, Fushida S, et al. Expression of p53 protein in colorectal cancer and its relationship to short-term prognosis[J]. Cancer, 1992, 70(12): 2778–2784.

    [38] Flamini G, Curigliano G, Ratto C, et al. Prognostic significance of cytoplasmic p53 overexpression in colorectal cancer. An immunohistochemical analysis[J]. European Journal of Cancer, 1996, 32(5): 802–806.

    [39] Gu Jian, Zhang Lidong, Swisher Stephen G, et al. Induction of p53-regulated genes in lung cancer cells: implications of the mechanism for adenoviral p53-mediated apoptosis[J]. On-cogene, 2004, 23(6): 1300–1307.

    [40] Mazars R, Pujol P, Maudelonde T, et al. P53 mutations in ovarian cancer: a late event[J]. Oncogene, 1991, 6(9): 1685–1690.

    [41] Shahin M S, Hughes J H, Sood A K, et al. The Prognostic significance of p53 tumor suppressor gene alterations in ovarian carcinoma[J]. Cancer, 2000, 89(9): 2006–2017.

    [42] Sagarra R A M, Andrade L A L A, Martinez E Z, et al. P53 and Bcl-2 as prognostic predictors in epithelial ovarian cancer[J]. International Journal of Gynecological Cancer, 2002, 12(6): 720–727.

    [43] Duan Ruiqi, Yuan Jialing, Yang Huan, et al. Detection of p53 gene mutation by using a novel biosensor based on localized surface Plasmon resonance[J]. Neoplasma, 2012, 59(3): 348–353.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research progress in applications of LSPR biosensor for clinical medicine detection[J]. Opto-Electronic Engineering, 2017, 44(2): 152
    Download Citation