• Photonic Sensors
  • Vol. 1, Issue 2, 140 (2011)
David J. WEBB*
Author Affiliations
  • Photonics Research Group, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
  • show less
    DOI: 10.1007/s13320-011-0030-7 Cite this Article
    David J. WEBB. Research Activities Arising From the University of Kent[J]. Photonic Sensors, 2011, 1(2): 140 Copy Citation Text show less
    References

    [1] D. J. Webb, J. D. C. Jones, and D. A. Jackson, “A frequency locked laser diode for interferometric sensing systems,” Electronics Letters, vol. 24, no. 16, pp. 1002-1004, 1988.

    [2] D. J. Webb, J. D. C. Jones, R. M. Taylor, and D. A. Jackson, “Extended range monomode fiber optic sensors: spectral and polarisation techniques,” Journal of Optoelectronics, vol. 3, no. 3, pp. 213-224, 1988.

    [3] D. J. Webb, J. D. C. Jones, and D. A. Jackson, “Extended range interferometry using a coherence tuned synthesised dual wavelength technique with multimode fibers,” Electronics Letters, vol. 24, no. 18, pp. 1173-1175, 1988.

    [4] D. J. Webb, R. P. Tatam, and D. A. Jackson, “A novel interferometric liquid refractometer,” Review of Scientific Instruments, vol. 60, no. 10, pp. 3347-3348, 1989.

    [5] G. P. Brady, S. Hope, A. B. L. Ribeiro, D. J. Webb, L. Reekie, J. L. Archambault, and D. A. Jackson, “Demultiplexing of fiber Bragg grating temperature and strain sensors,” Optics Communications, vol. 111, no. 1-2, pp. 51-54, 1994.

    [6] G. Brady, K. Kalli, D. J. Webb, L. Reekie, J. L. Archambault, and D. A. Jackson, “Simultaneous interrogation of interferometric and Bragg grating sensors,” Optics Letters, vol. 20, no. 11, pp. 1340-1342, 1995.

    [7] K. Kalli, G. P. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Wavelength-division and spatial multiplexing using tandem interferometers for Bragg grating sensor networks,” Optics Letters, vol. 20, no. 24, pp. 2544-2546, 1995.

    [8] Y. J. Rao, K. Kalli, G. Brady, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Spatially-multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection,” Electronics Letters, vol. 31, no. 12, pp. 1009-1010, 1995.

    [9] Y. Rao, D. J. Webb, D. Jackson, L. Zhang, and I. Bennion, “High-resolution, wavelength division multiplexed in-fiber Bragg grating sensor system,” Electronics Letters, vol. 32, no. 10, pp. 924-926, 1996.

    [10] N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fiber Bragg gratings for ultrasonic medical applications,” Measurement Science and Technology, vol. 8, no. 10, pp. 1050-1054, 1997.

    [11] Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “Optical in-fiber Bragg grating sensor systems for medical applications,” Journal of Biomedical Optics, vol. 3, no. 1, pp. 38-44, 1998.

    [12] D. J. Webb, M. W. Hathaway, D. A. Jackson, S. Jones, L. Zhang, and I. Bennion, “First in-vivo trials of a fiber Bragg grating based temperature profiling system,” Journal of Biomedical Optics, vol. 5, no. 1, pp. 45-50, 2000.

    [13] R. Rathod, R. D. Pechstedt, D. Jackson, and D. J. Webb, “Distributed temperature-change sensor based on Rayleigh Backscattering in an optical-fiber,” Optics Letters, vol. 19, no. 8, pp. 593-595, 1994.

    [14] X. Bao, D. J. Webb, and D. A. Jackson, “32 km distributed temperature sensor based on Brillouin loss in an optical fiber,” Optics Letters, vol. 18, no. 18, pp. 1561-1563, 1993.

    [15] X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical-studies on a distributed temperature sensor-based on Brillouin-scattering,” Journal of Lightwave Technology, vol. 13, no. 7, pp. 1340-1348, 1995.

    [16] C. N. Pannell, J. Dhliwayo, and D. J. Webb, “Accuracy of parameter estimation from noisy data, with application to resonance peak estimation in distributed Brillouin sensing,” Measurement Science and Technology, vol. 9, no. 1, pp. 50-57, 1998.

    [17] V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Brillouin based distributed fiber sensor incorporating a mode-locked Brillouin fiber ring laser,” Optics Communications, vol. 152, no. 4-6, pp. 263-268, 1998.

    [18] V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “25 km Brillouin based single-ended distributed fiber sensor for threshold detection of temperature or strain,” Optics Communications, vol. 168, no. 1-4, pp. 95-102, 1999.

    [19] V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Optics Letters, vol. 25, no. 3, pp. 156-8, 2000.

    [20] F. Farahi, D. J. Webb, J. D. C. Jones, and D. A. Jackson, “Simultaneous measurement of temperature and strain: cross sensitivity considerations,” Journal of Lightwave Technology, vol. 8, no. 2, pp. 2138-142, 1990.

    [21] G. P. Brady, K. Kalli, D. J. Webb, D. A. Jackson, L. Reekie, and J. L. Archambault, “Simultaneous measurement of strain and temperature using the first- and second-order diffraction wavelengths of Bragg gratings,” IEE Proceedings—Optoelectronics, vol. 144, no. 3, pp. 156-161, 1997.

    [22] A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Simultaneous en-face imaging of two layers in human retina by low-coherence reflectometry,” Optics Letters, vol. 22, no. 13, pp. 1039-1041, 1997.

    [23] A. G. Podoleanu, G. M. Dobre, D. J. Webb, and D. A. Jackson, “Coherence imaging by use of a Newton rings sampling function,” Optics Letters, vol. 21, no. 21, pp. 1789-1794, 1996.

    [24] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” Journal of Lightwave Technology, vol. 14, no. 1, pp. 58-65, 1996.

    [25] G. Humbert, A. Malki, S. Fevrier, P. Roy, and D. Pagnoux, “Electric arc-induced long-period gratings in Ge-free air-silica microstructure fibers,” Electronics Letters, vol. 39, no. 4, pp. 349-350, 2003.

    [26] T. Allsop, D. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Optical Fiber Technology, vol. 9, no. 4, pp. 210-223, 2003.

    [27] I. Allsop, D. J. Webb, and I. Bennion, “Investigations of the spectral sensitivity of long period gratings fabricated in three-layered optical fiber,” Journal of Lightwave Technology, vol. 21, no. 1, pp. 264-268, 2003.

    [28] T. Allsop, T. Earthrowl-Gould, D. J. Webb, and I. Bennion, “Embedded progressive-three-layered fiber long-period gratings for respiratory monitoring,” Journal of Biomedical Optics, vol. 8, no. 3, pp. 552-558, 2003.

    [29] T. Allsop, D. J. Webb, and I. Bennion, “Bend and index insensitive long period grating in progressive three layered optical fiber,” Electronics Letters, vol. 39, no. 6, pp. 508-509, 2003.

    [30] H. Dobb, K. Kalli and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fiber,” Electronics Letters, vol. 40, no. 11, pp. 657-8, 2004.

    [31] H. Dobb, K. Kalli, and D. J. Webb, “Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fiber,” Optics Communications, vol. 260, no. 1, pp. 184-191, 2006.

    [32] T. Allsop, M. Dubov, A. Martinez, F. Floreani, I. Khrushchev, D. J. Webb, and I. Bennion, “Long period grating directional bend sensor based on asymmetric index modification of cladding,” Electronics Letters, vol. 41, no. 2, pp. 59-60, 2005.

    [33] T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Review of Scientific Instruments, vol. 73, no. 4, pp. 1702-1705, 2002.

    [34] T. Allsop F. Floreani, K. Jedrzejewski, R. Marquez, R. Romero, D. J. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fiber,” Electronics Letters, vol. 41, no. 8, pp. 471-472, 2005.

    [35] B. M. Cowie, D. J. Webb, B. Tam, P. Slack, and P. N. Brett, “Fiber Bragg grating sensors for distributive tactile sensing,” Measurement Science & Technology, vol. 18, no. 1, pp. 138-146, 2007.

    [36] B. M. Cowie, A. S. Main, D. J. Webb, and P. N. Brett, “Distributive tactile sensing using fiber Bragg grating sensors - art. no. 66193T,” Third European Workshop on Optical Fiber Sensors, Proc. SPIE, vol. 6619, pp. T6193-T6193, 2007.

    [37] J. Homola (Ed.), Surface Plasmon Resonance Based Sensors. Berlin Heidelberg: Springer, 2006.

    [38] T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Generation off infared surface plasmon resonances with high refractive index sensitivity utilizing titled fiber Bragg grafings,” Applied Optics, vol. 46, no. 22, pp. 5456-5460, 2007.

    [39] T. Allsop, R. Neal, C. Mou, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “Exploitation of multilayer coatings for infrared surface plasmon resonance fiber sensors,” Applied Optics, vol. 48, no. 2, pp. 276-286, 2009.

    [40] T. D. P. Allsop, D. Nagel, R. Neal, E. M. Davies, C. Mou, P. Bond, S. Rehman, K. Kalli, D. J. Webb, P. Calverhouse, A. Hine, M. Mascini, and I. Bennion, “Aptamer-based surface plasmon sensor for thrombin detection,” Proc. SPIE, vol. 7715, pp. 77151C, 2010.

    [41] H. Dobb, K. Carroll, D. J. Webb, K. Kalli, M. Komodromos, C. Themistos, G. D. Peng, A. Argyros, M. C. J. Large, M. A. van Eijkelenborg, M. Arresy, and S. Kukureka, “Reliability of fiber Bragg gratings in polymer optical fiber - art. no. 61930Q,” Reliability of Optical Fiber Components, Devices, Systems, and Networks III, Proc. SPIE, vol. 6193, pp. Q1930, 2006.

    [42] J. Brandrup, Polymer Handbook, vol. 1&2. New York: Wiley, 1999 (Online version available at: http://www.knovel.com/web/portal/browse/display _EXT_KNOVEL_DISPLAY_bookid=1163&VerticalI D=0).

    [43] C. C. Ye, J. M. Dulieu-Barton, D. J. Webb, C. Zhang, G. D. Peng, A. R. Chambers, F. J. Lennard, and D. D. Eastop, “Applications of polymer optical fiber grating sensors to condition monitoring of textiles,” Proc. SPIE, vol. 7503, pp. 75030M, 2009.

    [44] N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” Ph. D., école Polytechnique Fédérale de Lausanne, Lausanne, 2008.

    [45] C. Zhang, X. Chen, D. J. Webb, and G. D. Peng, “Water detection in jet fuel using a polymer optical fiber Bragg grating,” Proc. SPIE, vol. 7503, pp. 750380, 2009.

    [46] C. Zhang, W. Zhang, D. J. Webb, and G. D. Peng, “Optical fiber temperature and humidity sensor,” Electronics Letters, vol. 46, no. 9, pp. 643-644, 2010.

    [47] M. K. Szczurowski, T. Martynkien, G. Statkiewicz-Barabach, W. Urbanczyk, L. Khan, and D. J. Webb, “Measurements of stress-optic coefficient in polymer optical fibers,” Optics Letters, vol. 35, no. 12, pp. 2013-2015, 2010.

    [48] K. E. Carroll, C. Zhang, D. J. Webb, K. Kalli, A. Argyros, and M. C. J. Large, “Thermal response of Bragg gratings in PMMA microstructured optical fibers,” Optics Express, vol. 15, no. 14, pp. 8844-8850, 2007.

    [49] I. P. Johnson, D. J. Webb, K. Kalli, M. C. Large, and A. Argyros, “Multiplexed FBG sensor recorded in multimode microstructured polymer optical fiber,” Proc. SPIE, vol. 7714, pp. 77140D, 2010.

    [50] H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. Large, and M. Van Eijkelenborg, “Continuous wave ultraviolet light-induced fiber Bragg gratings in fewand single-mode microstructured polymer optical fibers,” Optics Letters, vol. 30, no. 24, pp. 3296-3298, 2005.

    [51] I. P. Johnson, K. Kalli, and D. J. Webb, “827 nm Bragg grating sensor in multimode microstructured polymer optical fiber,” Electronics Letters, vol. 46, no. 17, pp. 1217-1218, 2010.

    [52] D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interferometric sensor interrogation using an arrayed waveguide grating,” IEEE Photonics Technology Letters, vol. 17, no. 1, pp. 172-174, 2005.

    [53] D. C. C. Norman, D. J. Webb, and R. D. Pechstedt, “Interrogation of fiber Bragg grating sensors using an arrayed waveguide grating,” Measurement Science & Technology, vol. 16, no. 3, pp. 691-698, 2005.

    [54] D. C C. Norman and D. J. Webb, “Fiber Bragg grating sensor interrogation using an acousto-optic tunable filter and low-coherence interferometry,” Measurement Science & Technology, vol. 18, no. 9, pp. 2967-2971, 2007.

    [55] D. C. C. Norman, Y. Lai, and D. J. Webb, “High birefringence fiber interrogating interferometer for optical sensing applications,” Electronics Letters, vol. 41, no. 5, pp. 235-236, 2005.

    [56] T. Allsop, K. Carroll, G. Lloyd, D. J. Webb, M. Miller, and I. Bennion, “Application of long-period-grating sensors to respiratory plethysmography,” Journal of Biomedical Optics, vol. 12, no. 6, pp. 064003, 2007.

    [57] T. Allsop, T. Earthrowl, R. Reeves, D. J. Webb, and I. Bennion, “The interrogation and multiplexing of long period grating curvature sensors using a Bragg grating based, derivative spectroscopy technique,” Measurement Science & Technology, vol. 15, no. 1, pp. 44-48, 2004.

    David J. WEBB. Research Activities Arising From the University of Kent[J]. Photonic Sensors, 2011, 1(2): 140
    Download Citation