[1] K PARK, H-P LEE, DUREN J K J VAN et al. Single crystal diamond: an ultimate semiconductor. Chicago: Office of Science, U.S. Department of Energy(2020).
[2] C DANG, J P CHOU, B DAI et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science, 76(2021).
[3] R ALHASANI, T YABE, Y IYAMA et al. An enhanced two-dimensional hole gas (2DHG) C-H diamond with positive surface charge model for advanced normally-off MOSFET devices. Scientific Reports, 4203(2022).
[4] B LIU, T BI, Y FU et al. MOSFETs on (110) C-H diamond: ALD Al2O3/diamond interface analysis and high performance normally- OFF operation realization. IEEE Transactions on Electron Devices, 949(2022).
[5] E BERDERMANN, K AFANACIEV, M CIOBANU et al. Progress in detector properties of heteroepitaxial diamond grown by chemical vapor deposition on Ir/YSZ/Si (001) wafers. Diamond and Related Materials, 107420(2019).
[6] M LIAO. Progress in semiconductor diamond photodetectors and MEMS sensors. Functional Diamond, 29(2021).
[7] T SHIMAOKA, S J H KOIZUMI et al. Recent progress in diamond radiation detectors. Functional Diamond, 205(2021).
[8] J C ARNAULT, K H LEE, J DELCHEVALRIE et al. Epitaxial diamond on Ir/SrTiO3/Si (001): from sequential material characterizations to fabrication of lateral schottky diodes. Diamond and Related Materials, 107768(2020).
[9] J ACHARD, V JACQUES, A TALLAIRE. Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications. Journal of Physics D: Applied Physics, 313001(2020).
[10] K O HO, Y SHEN, Y Y PANG et al. Diamond quantum sensors: from physics to applications on condensed matter research. Functional Diamond, 160(2021).
[11] L SANG. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Functional Diamond, 174(2021).
[12] Q YANG, J ZHAO, Y HUANG et al. A diamond made microchannel heat sink for high-density heat flux dissipation. Applied Thermal Engineering, 113804(2019).
[13] W LU, J LI, J MIAO et al. Application of high-thermal- conductivity diamond for space phased array antenna. Functional Diamond, 189(2021).
[14] M W GEIS, H I SMITH, A ARGOITIA et al. Large‐area mosaic diamond films approaching single-crystal quality. Applied Physics Letters, 2485(1991).
[15] H YAMADA, A CHAYAHARA, Y MOKUNO et al. A 2-in. mosaic wafer made of a single-crystal diamond. Applied Physics Letters, 102110(2014).
[16] A P YELISSEYEV, E I ZHIMULEV, Z A KARPOVICH et al. Characterization of the nitrogen state in HPHT diamonds grown in an Fe-C melt with a low sulfur addition. CrystEngComm, 4408(2022).
[17] S V CHERNYKH, A V CHERNYKH, S A TARELKIN et al. High-pressure high-temperature single-crystal diamond type IIa characterization for particle detectors. Physica Status Solidi (a), 1900888(2020).
[18] A CHARRIS, S NAD, J ASMUSSEN. Exploring constant substrate temperature and constant high pressure SCD growth using variable pocket holder depths. Diamond and Related Materials, 58(2017).
[19] W WANG, B LIU, L ZHANG et al. Heteroepitaxy of diamond semiconductor on iridium: a review. Functional Diamond, 215(2022).
[20] M SCHRECK, F HÖRMANN, H ROLL et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: a route for the realization of single-crystal diamond films. Applied Physics Letters, 192(2001).
[21] M SCHRECK, S GSELL, R BRESCIA et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Scientific Reports, 44462(2017).
[22] A ARGOITIA, J C ANGUS, J S MA et al. Heteroepitaxy of diamond on C-BN: growth mechanisms and defect characterization. Journal of Materials Research, 1849(1994).
[23] Y SHINTANI. Growth of highly (111)-oriented, highly coalesced diamond films on platinum (111) surface: a possibility of heteroepitaxy. Journal of Materials Research, 2955(1996).
[24] A HOFFMAN, S H MICHAELSON, R AKHVLEDIANI et al. Comparison of diamond bias enhanced nucleation on Ir and 3C-SiC: a high resolution electron energy loss spectroscopy study. Physica Status Solidi (a), 1972(2009).
[25] M SCHRECK, K-H THÜRER, B STRITZKER. Limitations of the process window for the bias enhanced nucleation of heteroepitaxial diamond films on silicon in the time domain. Journal of Applied Physics, 3092(1997).
[26] M SCHRECK. Single Crystal Diamond Growth on Iridium// Comprehensive Hard Materials. Elsevier, 269-304(2014).
[27] Y WANG, J ZHU, Z HU et al. Heteroepitaxial growth of single crystal diamond films on iridium: procedure and mechanism. Journal of Inorganic Materials, 909(2019).
[28] W WANG, Y WANG, G SHU et al. Recent progress in hetero-epitaxial growth of the single-crystal diamond. Scientia Sinica Technologica, 831(2020).
[29] M J CHIANG, M H HON. Optical emission spectroscopy study of positive direct current bias enhanced diamond nucleation. Thin Solid Films, 4765(2008).
[30] A CHAVANNE, J-C ARNAULT, J BARJON et al. Bias-enhanced nucleation of diamond on iridium: a comprehensive study of the first stages by sequential surface analysis. Surface Science, 564(2011).
[31] A CHAVANNE, J C ARNAULT, J BARJON et al. Effect of bias voltage on diamond nucleation on iridium during BEN. AIP Conference Proceedings, 137(2010).
[32] K OHTSUKA, K SUZUKI, A SAWABE et al. Epitaxial growth of diamond on iridium. Japanese Journal of Applied Physics, L1072(1996).
[33] G CHEN, W WANG, F LIN et al. Electrical characteristics of diamond MOSFET with 2DHG on a heteroepitaxial diamond substrate. Materials, 2557(2022).
[34] T YOSHIKAWA, D HERRLING, F MEYER et al. Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy: toward wafer-scale single-crystalline diamond synthesis. Journal of Vacuum Science & Technology B, 021207(2019).
[35] S-W KIM, Y KAWAMATA, R TAKAYA et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on ($11\bar{2}0$) sapphire substrate. Applied Physics Letters, 202102(2020).
[36] S-W KIM, R TAKAYA, S HIRANO et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11\bar{2}0$) misoriented substrate by step-flow mode. Applied Physics Express, 115501(2021).
[37] W WANG, S YANG, J HAN et al. Role of surface chemistry in determining the heteroepitaxial growth of Ir films on A-plane α-Al2O3 single crystals. Surfaces and Interfaces, 102172(2022).
[38] T BAUER, S GSELL, M SCHRECK et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers. Diamond and Related Materials, 314(2005).
[39] S GSELL, M FISCHER, M SCHRECK et al. Epitaxial films of metals from the platinum group (Ir, Rh, Pt and Ru) on YSZ- buffered Si (111. Journal of Crystal Growth, 3731(2009).
[40] M REGMI, K MORE, G ERES. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si (100) using microwave plasma chemical vapor deposition. Diamond and Related Materials, 28(2012).
[41] W WANG, S YANG, B LIU et al. Bias process for heteroepitaxial diamond nucleation on Ir substrates. Carbon Letters, 517(2023).
[42] J ACHARD, A TALLAIRE, R SUSSMANN et al. The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD. Journal of Crystal Growth, 396(2005).
[43] W WANG, K LIU, S YANG et al. Comparison of heteroepitaxial diamond nucleation and growth on roughened and flat Ir/SrTiO3 substrates. Vacuum, 111374(2022).
[44] W WANG, Y WANG, G SHU et al. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth. New Carbon Materials, 1034(2021).
[45] C STEHL, M FISCHER, S GSELL et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Applied Physics Letters, 151905(2013).
[46] B C GALLHEBER, M FISCHER, O KLEIN et al. Formation of huge in-plane anisotropy of intrinsic stress by off-axis growth of diamond. Applied Physics Letters, 141907(2016).
[47] B-C GALLHEBER, O KLEIN, M FISCHER et al. Propagation of threading dislocations in heteroepitaxial diamond films with (111) orientation and their role in the formation of intrinsic stress. Journal of Applied Physics, 225301(2017).
[48] Y WANG, W WANG, G SHU et al. Virtues of Ir (100) substrate on diamond epitaxial growth: first-principle calculation and XPS study. Journal of Crystal Growth, 126047(2021).
[49] M J VERSTRAETE, J C CHARLIER. Why is iridium the best substrate for single crystal diamond growth?. Applied Physics Letters, 191917(2005).
[50] L LIU, L ZHANG. Is there any substrate that is better than Ir (100) for diamond nucleation?. Journal of Physics: Condensed Matter, 435004(2015).
[51] J DONG, L ZHANG, X DAI et al. The epitaxy of 2D materials growth. Nature Communications, 5862(2020).
[52] Z ZHANG, X YANG, K LIU et al. Epitaxy of 2D materials toward single crystals. Advanced Science, 2105201(2022).
[53] V L NGUYEN, B G SHIN, D L DUONG et al. Seamless stitching of graphene domains on polished copper (111) foil. Advanced Materials, 1376(2015).
[54] J DONG, D GENG, F LIU et al. Formation of twinned graphene polycrystals. Angewandte Chemie International Edition, 7723(2019).
[55] W WANG, B DAI, G SHU et al. Competition between diamond nucleation and growth under bias voltage by microwave plasma chemical vapor deposition. CrystEngComm, 7731(2021).
[56] W WANG, S YANG, G SHU et al. Analysis of surface microstructures formed on Ir substrate under different bias conditions by microwave plasma chemical vapor deposition. Physica Status Solidi (a), 2100810(2022).
[57] G KRESSE, J HAFNER. Ab Initio molecular dynamics for open- shell transition metals. Physical Review B, 13115(1993).
[58] G KRESSE, J FURTHMÜLLER. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Computational Materials Science, 15(1996).
[59] J P PERDEW, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 3865(1996).
[60] G KRESSE, D JOUBERT. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1758(1999).
[61] L ZHANG, J DONG, Z GUAN et al. The alignment-dependent properties and applications of graphene moiré superstructures on the Ru (0001) surface. Nanoscale, 12831(2020).
[62] J YAITA, T SUTO, M-R NATAL et al. In situ sias current monitoring of nucleation for epitaxial diamonds on 3C-SiC/Si substrates. Diamond and Related Materials, 158(2018).
[63] Y LIFSHITZ, T H KÖHLER, T H FRAUENHEIM et al. The mechanism of diamond nucleation from energetic species. Science, 1531(2002).