• Journal of Inorganic Materials
  • Vol. 39, Issue 4, 416 (2024)
Weihua WANG1, Leining ZHANG2, Feng DING3,*, Bing DAI4,*..., Jiecai HAN4, Jiaqi ZHU4, Yi JIA1 and Yu Yang5|Show fewer author(s)
Author Affiliations
  • 11. China Aerospace Science and Technology Innovation Research Institute, China Aerospace Science and Technology Corporation, Beijing 100176, China
  • 22. School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
  • 33. Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
  • 44. National Key Laboratory of Special Environment of Composite Technology, Harbin Institute of Technology, Harbin 150001, China
  • 55. Beijing Institute of Control Engineering, Beijing 100190, China
  • show less
    DOI: 10.15541/jim20230392 Cite this Article
    Weihua WANG, Leining ZHANG, Feng DING, Bing DAI, Jiecai HAN, Jiaqi ZHU, Yi JIA, Yu Yang. Heteroepitaxial Diamond Nucleation and Growth on Iridium: First-principle Calculation[J]. Journal of Inorganic Materials, 2024, 39(4): 416 Copy Citation Text show less
    References

    [1] K PARK, H-P LEE, DUREN J K J VAN et al. Single crystal diamond: an ultimate semiconductor. Chicago: Office of Science, U.S. Department of Energy(2020).

    [2] C DANG, J P CHOU, B DAI et al. Achieving large uniform tensile elasticity in microfabricated diamond. Science, 76(2021).

    [3] R ALHASANI, T YABE, Y IYAMA et al. An enhanced two-dimensional hole gas (2DHG) C-H diamond with positive surface charge model for advanced normally-off MOSFET devices. Scientific Reports, 4203(2022).

    [4] B LIU, T BI, Y FU et al. MOSFETs on (110) C-H diamond: ALD Al2O3/diamond interface analysis and high performance normally- OFF operation realization. IEEE Transactions on Electron Devices, 949(2022).

    [5] E BERDERMANN, K AFANACIEV, M CIOBANU et al. Progress in detector properties of heteroepitaxial diamond grown by chemical vapor deposition on Ir/YSZ/Si (001) wafers. Diamond and Related Materials, 107420(2019).

    [6] M LIAO. Progress in semiconductor diamond photodetectors and MEMS sensors. Functional Diamond, 29(2021).

    [7] T SHIMAOKA, S J H KOIZUMI et al. Recent progress in diamond radiation detectors. Functional Diamond, 205(2021).

    [8] J C ARNAULT, K H LEE, J DELCHEVALRIE et al. Epitaxial diamond on Ir/SrTiO3/Si (001): from sequential material characterizations to fabrication of lateral schottky diodes. Diamond and Related Materials, 107768(2020).

    [9] J ACHARD, V JACQUES, A TALLAIRE. Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications. Journal of Physics D: Applied Physics, 313001(2020).

    [10] K O HO, Y SHEN, Y Y PANG et al. Diamond quantum sensors: from physics to applications on condensed matter research. Functional Diamond, 160(2021).

    [11] L SANG. Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Functional Diamond, 174(2021).

    [12] Q YANG, J ZHAO, Y HUANG et al. A diamond made microchannel heat sink for high-density heat flux dissipation. Applied Thermal Engineering, 113804(2019).

    [13] W LU, J LI, J MIAO et al. Application of high-thermal- conductivity diamond for space phased array antenna. Functional Diamond, 189(2021).

    [14] M W GEIS, H I SMITH, A ARGOITIA et al. Large‐area mosaic diamond films approaching single-crystal quality. Applied Physics Letters, 2485(1991).

    [15] H YAMADA, A CHAYAHARA, Y MOKUNO et al. A 2-in. mosaic wafer made of a single-crystal diamond. Applied Physics Letters, 102110(2014).

    [16] A P YELISSEYEV, E I ZHIMULEV, Z A KARPOVICH et al. Characterization of the nitrogen state in HPHT diamonds grown in an Fe-C melt with a low sulfur addition. CrystEngComm, 4408(2022).

    [17] S V CHERNYKH, A V CHERNYKH, S A TARELKIN et al. High-pressure high-temperature single-crystal diamond type IIa characterization for particle detectors. Physica Status Solidi (a), 1900888(2020).

    [18] A CHARRIS, S NAD, J ASMUSSEN. Exploring constant substrate temperature and constant high pressure SCD growth using variable pocket holder depths. Diamond and Related Materials, 58(2017).

    [19] W WANG, B LIU, L ZHANG et al. Heteroepitaxy of diamond semiconductor on iridium: a review. Functional Diamond, 215(2022).

    [20] M SCHRECK, F HÖRMANN, H ROLL et al. Diamond nucleation on iridium buffer layers and subsequent textured growth: a route for the realization of single-crystal diamond films. Applied Physics Letters, 192(2001).

    [21] M SCHRECK, S GSELL, R BRESCIA et al. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Scientific Reports, 44462(2017).

    [22] A ARGOITIA, J C ANGUS, J S MA et al. Heteroepitaxy of diamond on C-BN: growth mechanisms and defect characterization. Journal of Materials Research, 1849(1994).

    [23] Y SHINTANI. Growth of highly (111)-oriented, highly coalesced diamond films on platinum (111) surface: a possibility of heteroepitaxy. Journal of Materials Research, 2955(1996).

    [24] A HOFFMAN, S H MICHAELSON, R AKHVLEDIANI et al. Comparison of diamond bias enhanced nucleation on Ir and 3C-SiC: a high resolution electron energy loss spectroscopy study. Physica Status Solidi (a), 1972(2009).

    [25] M SCHRECK, K-H THÜRER, B STRITZKER. Limitations of the process window for the bias enhanced nucleation of heteroepitaxial diamond films on silicon in the time domain. Journal of Applied Physics, 3092(1997).

    [26] M SCHRECK. Single Crystal Diamond Growth on Iridium// Comprehensive Hard Materials. Elsevier, 269-304(2014).

    [27] Y WANG, J ZHU, Z HU et al. Heteroepitaxial growth of single crystal diamond films on iridium: procedure and mechanism. Journal of Inorganic Materials, 909(2019).

    [28] W WANG, Y WANG, G SHU et al. Recent progress in hetero-epitaxial growth of the single-crystal diamond. Scientia Sinica Technologica, 831(2020).

    [29] M J CHIANG, M H HON. Optical emission spectroscopy study of positive direct current bias enhanced diamond nucleation. Thin Solid Films, 4765(2008).

    [30] A CHAVANNE, J-C ARNAULT, J BARJON et al. Bias-enhanced nucleation of diamond on iridium: a comprehensive study of the first stages by sequential surface analysis. Surface Science, 564(2011).

    [31] A CHAVANNE, J C ARNAULT, J BARJON et al. Effect of bias voltage on diamond nucleation on iridium during BEN. AIP Conference Proceedings, 137(2010).

    [32] K OHTSUKA, K SUZUKI, A SAWABE et al. Epitaxial growth of diamond on iridium. Japanese Journal of Applied Physics, L1072(1996).

    [33] G CHEN, W WANG, F LIN et al. Electrical characteristics of diamond MOSFET with 2DHG on a heteroepitaxial diamond substrate. Materials, 2557(2022).

    [34] T YOSHIKAWA, D HERRLING, F MEYER et al. Influence of substrate holder configurations on bias enhanced nucleation area for diamond heteroepitaxy: toward wafer-scale single-crystalline diamond synthesis. Journal of Vacuum Science & Technology B, 021207(2019).

    [35] S-W KIM, Y KAWAMATA, R TAKAYA et al. Growth of high-quality one-inch free-standing heteroepitaxial (001) diamond on ($11\bar{2}0$) sapphire substrate. Applied Physics Letters, 202102(2020).

    [36] S-W KIM, R TAKAYA, S HIRANO et al. Two-inch high-quality (001) diamond heteroepitaxial growth on sapphire ($11\bar{2}0$) misoriented substrate by step-flow mode. Applied Physics Express, 115501(2021).

    [37] W WANG, S YANG, J HAN et al. Role of surface chemistry in determining the heteroepitaxial growth of Ir films on A-plane α-Al2O3 single crystals. Surfaces and Interfaces, 102172(2022).

    [38] T BAUER, S GSELL, M SCHRECK et al. Growth of epitaxial diamond on silicon via iridium/SrTiO3 buffer layers. Diamond and Related Materials, 314(2005).

    [39] S GSELL, M FISCHER, M SCHRECK et al. Epitaxial films of metals from the platinum group (Ir, Rh, Pt and Ru) on YSZ- buffered Si (111. Journal of Crystal Growth, 3731(2009).

    [40] M REGMI, K MORE, G ERES. A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si (100) using microwave plasma chemical vapor deposition. Diamond and Related Materials, 28(2012).

    [41] W WANG, S YANG, B LIU et al. Bias process for heteroepitaxial diamond nucleation on Ir substrates. Carbon Letters, 517(2023).

    [42] J ACHARD, A TALLAIRE, R SUSSMANN et al. The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD. Journal of Crystal Growth, 396(2005).

    [43] W WANG, K LIU, S YANG et al. Comparison of heteroepitaxial diamond nucleation and growth on roughened and flat Ir/SrTiO3 substrates. Vacuum, 111374(2022).

    [44] W WANG, Y WANG, G SHU et al. Recent progress on controlling dislocation density and behavior during heteroepitaxial single crystal diamond growth. New Carbon Materials, 1034(2021).

    [45] C STEHL, M FISCHER, S GSELL et al. Efficiency of dislocation density reduction during heteroepitaxial growth of diamond for detector applications. Applied Physics Letters, 151905(2013).

    [46] B C GALLHEBER, M FISCHER, O KLEIN et al. Formation of huge in-plane anisotropy of intrinsic stress by off-axis growth of diamond. Applied Physics Letters, 141907(2016).

    [47] B-C GALLHEBER, O KLEIN, M FISCHER et al. Propagation of threading dislocations in heteroepitaxial diamond films with (111) orientation and their role in the formation of intrinsic stress. Journal of Applied Physics, 225301(2017).

    [48] Y WANG, W WANG, G SHU et al. Virtues of Ir (100) substrate on diamond epitaxial growth: first-principle calculation and XPS study. Journal of Crystal Growth, 126047(2021).

    [49] M J VERSTRAETE, J C CHARLIER. Why is iridium the best substrate for single crystal diamond growth?. Applied Physics Letters, 191917(2005).

    [50] L LIU, L ZHANG. Is there any substrate that is better than Ir (100) for diamond nucleation?. Journal of Physics: Condensed Matter, 435004(2015).

    [51] J DONG, L ZHANG, X DAI et al. The epitaxy of 2D materials growth. Nature Communications, 5862(2020).

    [52] Z ZHANG, X YANG, K LIU et al. Epitaxy of 2D materials toward single crystals. Advanced Science, 2105201(2022).

    [53] V L NGUYEN, B G SHIN, D L DUONG et al. Seamless stitching of graphene domains on polished copper (111) foil. Advanced Materials, 1376(2015).

    [54] J DONG, D GENG, F LIU et al. Formation of twinned graphene polycrystals. Angewandte Chemie International Edition, 7723(2019).

    [55] W WANG, B DAI, G SHU et al. Competition between diamond nucleation and growth under bias voltage by microwave plasma chemical vapor deposition. CrystEngComm, 7731(2021).

    [56] W WANG, S YANG, G SHU et al. Analysis of surface microstructures formed on Ir substrate under different bias conditions by microwave plasma chemical vapor deposition. Physica Status Solidi (a), 2100810(2022).

    [57] G KRESSE, J HAFNER. Ab Initio molecular dynamics for open- shell transition metals. Physical Review B, 13115(1993).

    [58] G KRESSE, J FURTHMÜLLER. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane- wave basis set. Computational Materials Science, 15(1996).

    [59] J P PERDEW, K BURKE, M ERNZERHOF. Generalized gradient approximation made simple. Physical Review Letters, 3865(1996).

    [60] G KRESSE, D JOUBERT. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1758(1999).

    [61] L ZHANG, J DONG, Z GUAN et al. The alignment-dependent properties and applications of graphene moiré superstructures on the Ru (0001) surface. Nanoscale, 12831(2020).

    [62] J YAITA, T SUTO, M-R NATAL et al. In situ sias current monitoring of nucleation for epitaxial diamonds on 3C-SiC/Si substrates. Diamond and Related Materials, 158(2018).

    [63] Y LIFSHITZ, T H KÖHLER, T H FRAUENHEIM et al. The mechanism of diamond nucleation from energetic species. Science, 1531(2002).

    Weihua WANG, Leining ZHANG, Feng DING, Bing DAI, Jiecai HAN, Jiaqi ZHU, Yi JIA, Yu Yang. Heteroepitaxial Diamond Nucleation and Growth on Iridium: First-principle Calculation[J]. Journal of Inorganic Materials, 2024, 39(4): 416
    Download Citation