• Opto-Electronic Engineering
  • Vol. 52, Issue 1, 240245 (2025)
Xueli Shen, Jiahui Wang*, and Zhengwei Wu
Author Affiliations
  • School of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
  • show less
    DOI: 10.12086/oee.2025.240245 Cite this Article
    Xueli Shen, Jiahui Wang, Zhengwei Wu. Dynamic SAR image target detection by fusing space-frequency domain[J]. Opto-Electronic Engineering, 2025, 52(1): 240245 Copy Citation Text show less
    References

    [1] L M Liang, K Q Chen, C B Wang et al. Remote sensing image detection algorithm integrating visual center mechanism and parallel patch perception. Opto-Electron Eng, 51, 240099(2024).

    [2] Z J Xiao, J H Zhang, B H Lin. Feature coordination and fine-grained perception of small targets in remote sensing images. Opto-Electron Eng, 51, 240066(2024).

    [3] L Ma, Y T Gou, T Lei et al. Small object detection based on multi-scale feature fusion using remote sensing images. Opto-Electron Eng, 49, 210363(2022).

    [4] S Q Ren, K M He, R Girshick et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 39, 1137-1149(2017).

    [5] J Redmon, S Divvala, R Girshick et al. You only look once: unified, real-time object detection, 779-788(2016). https://doi.org/10.1109/CVPR.2016.91

    [6] J Redmon, A Farhadi. YOLO9000: better, faster, stronger, 6517-6525(2017). https://doi.org/10.1109/CVPR.2017.690

    [7] J Redmon, A Farhadi. YOLOv3: an incremental improvement(2018). https://doi.org/10.48550/arxiv.1804.02767

    [8] A Bochkovskiy, C Y Wang, H Y M Liao. YOLOv4: optimal speed and accuracy of object detection(2020). https://doi.org/10.48550/arxiv.2004.10934

    [9] Z Ge, S T Liu, F Wang et al. YOLOX: exceeding YOLO series in 2021(2021). https://doi.org/10.48550/arxiv.2107.08430

    [10] Z W Lyu, H F Jin, T Zhen et al. Small object recognition algorithm of grain pests based on SSD feature fusion. IEEE Access, 9, 43202-43213(2021).

    [11] L P Zhang, Y Liu, W D Zhao et al. Frequency-adaptive learning for SAR ship detection in clutter scenes. IEEE Trans Geosci Remote Sens, 61, 5215514(2023).

    [12] J H Si, B B Song, J X Wu et al. Maritime ship detection method for satellite images based on multiscale feature fusion. IEEE J Sel Top Appl Earth Obs Remote Sens, 16, 6642-6655(2023).

    [13] C Qin, X Q Wang, G Li et al. A semi-soft label-guided network with self-distillation for SAR inshore ship detection. IEEE Trans Geosci Remote Sens, 61, 5211814(2023).

    [14] X W Xu, X L Zhang, T W Zhang et al. SAR ship detection in complex scenes based on adaptive anchor assignment and IOU supervise. J Radars, 12, 1097-1111(2023).

    [15] Z J Xiao, B H Lin, H C Qu. SAR ship detection with multi-mechanism fusion. J Image Graphics, 29, 545-558(2024).

    [16] P S Sun, X B Wen. An improved algorithm for detecting ship target in SAR images based on YOLOv5 model. Electron-Opt Control, 31, 32-37,85(2024).

    [17] K Li, D Wang, Z Y Hu et al. Unleashing channel potential: space-frequency selection convolution for SAR object detection, 17323-17332(2024). https://doi.org/10.1109/CVPR52733.2024.01640

    [18] J Zhou, C Xiao, B Peng et al. DiffDet4SAR: diffusion-based aircraft target detection network for SAR images. IEEE Geosci Remote Sens Lett, 21, 4007905(2024).

    [19] A Wang, H Chen, L H Liu et al. YOLOv10: real-time end-to-end object detection(2024). https://doi.org/10.48550/arxiv.2405.14458

    [20] P F Zhang, E Lo, B T Lu. High performance depthwise and pointwise convolutions on mobile devices, 6795-6802(2020). https://doi.org/10.1609/aaai.v34i04.6159

    [21] Y H Guo, Y D Li, L Q Wang et al. Depthwise convolution is all you need for learning multiple visual domains, 8368-8375(2019). https://doi.org/10.1609/aaai.v33i01.33018368

    [22] K M He, X Y Zhang, S Q Ren et al. Deep residual learning for image recognition, 770-778(2016). https://doi.org/10.1109/CVPR.2016.90

    [23] H B Wu, H C Kuo, N J Zheng et al. Partially fake audio detection by self-attention-based fake span discovery, 9236-9240(2022). https://doi.org/10.1109/ICASSP43922.2022.9746162

    [24] A Vaswani, N Shazeer, N Parmar et al. Attention is all you need, 6000-6010(2017).

    [25] G Bebis, M Georgiopoulos. Feed-forward neural networks. IEEE Potentials, 13, 27-31(1994).

    [26] F Chollet. Xception: deep learning with depthwise separable convolutions, 1800-1807(2017). https://doi.org/10.1109/CVPR.2017.195

    [27] A Neubeck, Gool L Van. Efficient non-maximum suppression, 850-855(2006). https://doi.org/10.1109/ICPR.2006.479

    [28] J F Li, Y Wen, L H He. SCConv: spatial and channel reconstruction convolution for feature redundancy, 6153-6162(2023). https://doi.org/10.1109/CVPR52729.2023.00596

    [29] T Y Hsiao, Y C Chang, H H Chou et al. Filter-based deep-compression with global average pooling for convolutional networks. J Syst Archit, 95, 9-18(2019).

    [30] L McClenny, U Braga-Neto. Self-adaptive physics-informed neural networks using a soft attention mechanism(2020). https://doi.org/10.48550/arxiv.2009.04544

    [31] J W Chen, D X An, B B Ge et al. Detection, parameters estimation, and imaging of moving targets based on extended post-Doppler STAP in multichannel WasSAR-GMTI. IEEE Trans Geosci Remote Sens, 62, 5223515(2024).

    [32] E Koç, T Alikaşifoğlu, A C Aras et al. Trainable fractional Fourier transform. IEEE Signal Process Lett, 31, 751-755(2024).

    [33] S Z Luan, C Chen, B C Zhang et al. Gabor convolutional networks. IEEE Trans Image Process, 27, 4357-4366(2018).

    [34] X Y Yin, J Goudriaan, E A Lantinga et al. A flexible sigmoid function of determinate growth. Ann Bot, 91, 361-371(2003).

    [35] Z Gevorgyan. SIoU loss: more powerful learning for bounding box regression(2022). https://doi.org/10.48550/arxiv.2205.12740

    [36] Z H Zheng, P Wang, D W Ren et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans Cybern, 52, 8574-8586(2022).

    [37] Y F Zhang, W Q Ren, Z Zhang et al. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing, 506, 146-157(2022).

    [38] Z J Tong, Y H Chen, Z W Xu et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism(2023). https://doi.org/10.48550/arxiv.2301.10051

    [39] Z R Wang, Y Z Kang, X Zeng et al. SAR-AIRcraft-1.0: High-resolution SAR aircraft detection and recognition dataset. J Radars, 12, 906-922(2023).

    [40] S J Wei, X F Zeng, Q Z Qu et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation. IEEE Access, 8, 120234-120254(2020).

    [41] Y Y Wang, C Wang, H Zhang et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery. Remote Sens, 11, 531(2019).

    [42] D C Pan, X Gao, W Dai et al. SRT-net: scattering region topology network for oriented ship detection in large-scale SAR images. IEEE Trans Geosci Remote Sens, 62, 5202318(2024).

    Xueli Shen, Jiahui Wang, Zhengwei Wu. Dynamic SAR image target detection by fusing space-frequency domain[J]. Opto-Electronic Engineering, 2025, 52(1): 240245
    Download Citation