• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0723002 (2023)
Fen Wei1、2、3、4, Yi Wu1、3、4、*, and Shiwu Xu1、5
Author Affiliations
  • 1Key Laboratory of Opto-Electronic Science and Technology for Medicine Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
  • 2Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • 3Fujian Key Laboratory of Photonics Technology, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
  • 4Fujian Engineering Technology Research Center of Photoelectric Sensing Application, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
  • 5Concord University College, Fujian Normal University, Fuzhou 350117, Fujian, China
  • show less
    DOI: 10.3788/LOP213084 Cite this Article Set citation alerts
    Fen Wei, Yi Wu, Shiwu Xu. Experimental Research on Visible Light Positioning Using Machine Learning and Multi-Photodiode[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0723002 Copy Citation Text show less
    References

    [1] Ridhawi I A, Aloqaily M. A policy-based location-aware framework for personalized services in cloud computing systems[C](2015).

    [2] Ling R W C, Gupta A, Vashistha A et al. High precision UWB-IR indoor positioning system for IoT applications[C], 135-139(2018).

    [3] Jang B, Kim H. Indoor positioning technologies without offline fingerprinting map: a survey[J]. IEEE Communications Surveys & Tutorials, 21, 508-525(2019).

    [4] Zafari F, Gkelias A, Leung K K. A survey of indoor localization systems and technologies[J]. IEEE Communications Surveys & Tutorials, 21, 2568-2599(2019).

    [5] Li F M, Zhang T, Liu K et al. An indoor positioning method based on range measuring and location fingerprinting[J]. Chinese Journal of Computers, 42, 109-120(2019).

    [6] He S N, Chan S H G. Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons[J]. IEEE Communications Surveys & Tutorials, 18, 466-490(2016).

    [7] Wang C Z, Shi Z C, Wu F. Intelligent RFID indoor localization system using a Gaussian filtering based extreme learning machine[J]. Symmetry, 9, 30(2017).

    [8] Dinh T M T, Duong N S, Sandrasegaran K. Smartphone-based indoor positioning using BLE iBeacon and reliable lightweight fingerprint map[J]. IEEE Sensors Journal, 20, 10283-10294(2020).

    [9] Bianchi V, Ciampolini P, de Munari I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement, 68, 566-575(2019).

    [10] Carotenuto R, Merenda M, Iero D et al. An indoor ultrasonic system for autonomous 3-D positioning[J]. IEEE Transactions on Instrumentation and Measurement, 68, 2507-2518(2019).

    [11] Li R B, Liu J Y, Zhang L et al. LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments[C](2014).

    [12] Davison A J. Real-time simultaneous localisation and mapping with a single camera[C], 1403-1410(2003).

    [13] Zhuang Y, Hua L C, Qi L N et al. A survey of positioning systems using visible LED lights[J]. IEEE Communications Surveys & Tutorials, 20, 1963-1988(2018).

    [14] Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 50, 100-107(2004).

    [15] Gu W J, Zhang W Z, Kavehrad M et al. Three-dimensional light positioning algorithm with filtering techniques for indoor environments[J]. Optical Engineering, 53, 107107(2014).

    [16] Xie B, Chen K Y, Tan G et al. LIPS: a light intensity: based positioning system for indoor environments[J]. ACM Transactions on Sensor Networks, 12, 28(2016).

    [17] Kuo Y S, Pannuto P, Hsiao K J et al. Luxapose: indoor positioning with mobile phones and visible light[C], 447-458(2014).

    [18] Akiyama T, Sugimoto M, Hashizume H. Time-of-arrival-based smartphone localization using visible light communication[C](2017).

    [19] Sharifi H, Kumar A, Alam F et al. Indoor localization of mobile robot with visible light communication[C](2016).

    [20] Lee S, Jung S Y. Location awareness using Angle-of-arrival based circular-PD-array for visible light communication[C], 480-485(2012).

    [21] Nah J H Y, Parthiban R, Jaward M H. Visible Light Communications localization using TDOA-based coherent heterodyne detection[C], 247-249(2013).

    [22] Naz A, Hassan N U, Pasha M A et al. Single LED ceiling lamp based indoor positioning system[C], 682-687(2018).

    [23] Yang S H, Jung E M, Han S K. Indoor location estimation based on LED visible light communication using multiple optical receivers[J]. IEEE Communications Letters, 17, 1834-1837(2013).

    [24] Xu W, Wang J, Shen H et al. Indoor positioning for multiphotodiode device using visible-light communications[J]. IEEE Photonics Journal, 8, 7900511(2016).

    [25] Yu X H, Wang J P, Lu H M. Single LED-based indoor positioning system using multiple photodetectors[J]. IEEE Photonics Journal, 10, 7909108(2018).

    [26] Yang S H, Kim H S, Son Y H et al. Three-dimensional visible light indoor localization using AOA and RSS with multiple optical receivers[J]. Journal of Lightwave Technology, 32, 2480-2485(2014).

    [27] Yasir M, Ho S W, Vellambi B N. Indoor position tracking using multiple optical receivers[J]. Journal of Lightwave Technology, 34, 1166-1176(2016).

    [28] Yu X H, Wang J P, Lu H M. Indoor positioning system based on single LED using symmetrical optical receiver[C](2018).

    [29] Wang L X, Guo C L. Indoor visible light localization algorithm with multi-directional PD array[C](2017).

    [30] Jeong E M, Yang S H, Kim H S et al. Tilted receiver angle error compensated indoor positioning system based on visible light communication[J]. Electronics Letters, 49, 890-892(2013).

    [31] Xu Y F, Zhao J Q, Shi J Y et al. Reversed three-dimensional visible light indoor positioning utilizing annular receivers with multi-photodiodes[J]. Sensors, 16, 1254(2016).

    [32] Plets D, Almadani Y, Bastiaens S et al. Efficient 3D trilateration algorithm for visible light positioning[J]. Journal of Optics, 21, 05LT01(2019).

    [33] Plets D, Bastiaens S, Ijaz M et al. Three-dimensional visible light positioning: an experimental assessment of the importance of the LEDs’ locations[C](2019).

    [34] Li Q L, Wang J Y, Huang T et al. Three-dimensional indoor visible light positioning system with a single transmitter and a single tilted receiver[J]. Optical Engineering, 55, 106103(2016).

    [35] Shen S Q, Li S Y, Steendam H. Simultaneous position and orientation estimation for visible light systems with multiple LEDs and multiple PDs[J]. IEEE Journal on Selected Areas in Communications, 38, 1866-1879(2020).

    [36] Do T H, Yoo M. An in-depth survey of visible light communication based positioning systems[J]. Sensors, 16, 678(2016).

    [37] Zhou B P, Lau V, Chen Q C et al. Simultaneous positioning and orientating for visible light communications: algorithm design and performance analysis[J]. IEEE Transactions on Vehicular Technology, 67, 11790-11804(2018).

    [38] Wu Y X, Liu X W, Guan W P et al. High-speed 3D indoor localization system based on visible light communication using differential evolution algorithm[J]. Optics Communications, 424, 177-189(2018).

    [39] Kim H S, Kim D R, Yang S H et al. An indoor visible light communication positioning system using a RF carrier allocation technique[J]. Journal of Lightwave Technology, 31, 134-144(2013).

    [40] Alam F, Chew M T, Wenge T et al. An accurate visible light positioning system using regenerated fingerprint database based on calibrated propagation model[J]. IEEE Transactions on Instrumentation and Measurement, 68, 2714-2723(2019).

    [41] Xu S W, Wu Y, Su G D. Fingerprint matching and localization algorithm based on orthogonal frequency division multiplexing modulation for visible light communication[J]. Laser & Optoelectronics Progress, 56, 090601(2019).

    [42] Xu S W, Wu Y, Wang X F. Visible light positioning algorithm based on sparsity adaptive and location fingerprinting[J]. Acta Optica Sinica, 40, 1806003(2020).

    [43] Xu H, Wang X D, Wu N. Indoor visible light fingerprint positioning scheme based on convolution neural network[J]. Laser & Optoelectronics Progress, 58, 1706008(2021).

    [44] Zhao C H, Zhang H M, Song J. Fingerprint based visible light indoor localization method[J]. Chinese Journal of Lasers, 45, 0806002(2018).

    [45] Wenge T, Chew M T, Alam F et al. Implementation of a visible light based indoor localization system[C](2018).

    [46] Guo X S, Shao S H, Ansari N et al. Indoor localization using visible light via fusion of multiple classifiers[J]. IEEE Photonics Journal, 9, 7803716(2017).

    [47] Bishop C M[M]. Pattern recognition and machine learning(2006).

    [48] Van M T, van Tuan N, Son T T et al. Weighted k-nearest neighbour model for indoor VLC positioning[J]. IET Communications, 11, 864-871(2017).

    [49] Xu S W, Chen C C, Wu Y et al. Adaptive residual weighted K-nearest neighbor fingerprint positioning algorithm based on visible light communication[J]. Sensors, 20, 4432(2020).

    [50] Jiang J J, Guan W P, Chen Z N et al. Indoor high-precision three-dimensional positioning algorithm based on visible light communication and fingerprinting using K-means and random forest[J]. Optical Engineering, 58, 016102(2019).

    [51] Brunato M, Battiti R. Statistical learning theory for location fingerprinting in wireless LANs[J]. Computer Networks, 47, 825-845(2005).

    [52] Liu P X, Mao T Q, Ma K et al. Three-dimensional visible light positioning using regression neural network[C], 156-160(2019).

    [53] Alonso-González I, Sánchez-Rodríguez D, Ley-Bosch C et al. Discrete indoor three-dimensional localization system based on neural networks using visible light communication[J]. Sensors, 18, 1040(2018).

    [54] Zhang S, Du P F, Chen C et al. 3D indoor visible light positioning system using RSS ratio with neural network[C](2018).

    [55] Chen Y R, Guan W P, Li J Y et al. Indoor real-time 3-D visible light positioning system using fingerprinting and extreme learning machine[J]. IEEE Access, 8, 13875-13886(2020).

    [56] Liu K H, Yan S D, Gong X L. Indoor 3D visible light positioning algorithm based on fingerprint reconstruction and sparse training nodes[J]. Chinese Journal of Lasers, 48, 0306003(2021).

    [57] Bakar A H A, Glass T, Tee H Y et al. Accurate visible light positioning using multiple-photodiode receiver and machine learning[J]. IEEE Transactions on Instrumentation and Measurement, 70, 7500812(2021).

    [58] Pham N Q, Rachim V P, Chung W Y. High-accuracy VLC-based indoor positioning system using multi-level modulation[J]. Optics Express, 27, 7568-7584(2019).

    [59] Hou Y N, Xiao S L, Zheng H F et al. Multiple access scheme based on block encoding time division multiplexing in an indoor positioning system using visible light[J]. Journal of Optical Communications and Networking, 7, 489-495(2015).

    [60] Gu W J, Aminikashani M, Deng P et al. Impact of multipath reflections on the performance of indoor visible light positioning systems[J]. Journal of Lightwave Technology, 34, 2578-2587(2016).

    [61] Yasir M, Ho S W, Vellambi B N. Indoor positioning system using visible light and accelerometer[J]. Journal of Lightwave Technology, 32, 3306-3316(2014).

    [62] Tran H Q, Ha C. High precision weighted optimum K-nearest neighbors algorithm for indoor visible light positioning applications[J]. IEEE Access, 8, 114597-114607(2020).

    [63] Huang G B, Zhou H M, Ding X J et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42, 513-529(2012).

    [64] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 55, 119-139(1997).

    [65] Peter H[M]. Machine learning in action. Li R, Li P, Qu Y D, et al., Transl(2013).

    [66] Wang W H, Liu X Y. The selection of input weights of extreme learning machine: a sample structure preserving point of view[J]. Neurocomputing, 261, 28-36(2017).

    [67] Feng Z K, Niu W J, Tang Z Y et al. Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization[J]. Journal of Hydrology, 583, 124627(2020).

    [68] Xu S W, Wu Y, Wang X F. Visible light positioning algorithm based on particle swarm optimization compressed sensing[J]. Chinese Journal of Lasers, 48, 0306004(2021).

    [69] Zhang H Y, Yu H Y, Wang K et al. Indoor visible light positioning of improved RBF neural network based on KPCA-K-means++ and GA-LMS model[J]. Acta Optica Sinica, 1906001(2021).

    [70] Zhao L, Han Z D, Zhang F. Research on stereo location in visible light room based on neural network[J]. Chinese Journal of Lasers, 48, 0706004(2021).

    [71] Zhang R, Zhong W D, Qian K M et al. A reversed visible light multitarget localization system via sparse matrix reconstruction[J]. IEEE Internet of Things Journal, 5, 4223-4230(2018).

    Fen Wei, Yi Wu, Shiwu Xu. Experimental Research on Visible Light Positioning Using Machine Learning and Multi-Photodiode[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0723002
    Download Citation