• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 5, 1850030 (2018)
Hengchang Guo1, Hsing-Wen Wang1, Qinggong Tang1, Erik Anderson2, Reuben Falola2, Tikina Smith3, Yi Liu1, Moshe Levi2, Peter M.2, and Yu Chen1、*
Author Affiliations
  • 1Fischell Department of Bioengineering University of Maryland College Park, MD 20742, USA
  • 2Department of Biochemistry and Molecular & Cellular Biology Georgetown University Medical Center Washington DC 20007, USA
  • 3Central Animal Resources Facility University of Maryland, College Park, MD 20742, USA
  • show less
    DOI: 10.1142/s179354581850030x Cite this Article
    Hengchang Guo, Hsing-Wen Wang, Qinggong Tang, Erik Anderson, Reuben Falola, Tikina Smith, Yi Liu, Moshe Levi, Peter M., Yu Chen. Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography[J]. Journal of Innovative Optical Health Sciences, 2018, 11(5): 1850030 Copy Citation Text show less
    References

    [1] A. S. Go, G. M. Chertow, D. J. Fan, C. E. McCulloch, C. Y. Hsu, "Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization," N. Engl. J. Med. 351, 1296–1305 (2004).

    [2] A. S. Levey et al., "National kidney foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification," Ann. Int. Med. 139, 137–147 (2003).

    [3] R. J. Glassock, D. G. Oreopoulos, "Aging and chronic kidney disease," Nephron Clin. Pract. 119, c1–c1 (2011).

    [4] M. Tonelli et al., "Chronic kidney disease and mortality risk: A systematic review," J. Am. Soc. Nephrol. 17, 2034–2047 (2006).

    [5] A. S. Levey, J. Coresh, "Chronic kidney disease," The lancet 379, 165–180 (2012).

    [6] A. S. Levey et al., "Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO)," Kidney Int. 67, 2089–2100 (2005).

    [7] A. Chen et al., "Experimental focal segmental glomerulosclerosis in mice," Nephron 78, 440–452 (1998).

    [8] E. Bucciarelli, R. Binazzi, P. Santori, G. Vespasiani, "Nephrotic syndrome in rats due to adriamycin chlorhydrate," Lav. Ist. Anat. Istol. Patol. Univ. Studi Perugia 36, 52–69 (1976).

    [9] J. J. Nikken, G. P. Krestin, "MRI of the kidneystate of the art," Eur. Radiol. 17, 2780–2793 (2007).

    [10] P. Andrews et al., "Optical coherence tomography of the living human kidney," J. Innov. Opt. Health Sci. 7, 1350064 (2014).

    [11] P. M. Andrews et al., "High-resolution optical coherence tomography imaging of the living kidney," Lab. Invest. 88, 441–449 (2008).

    [12] Y. Chen, P. M. Andrews, A. D. Aguirre, J. M. Schmitt, J. G. Fujimoto, "High-resolution three-dimensional optical coherence tomography imaging of kidney microanatomy ex vivo," J. Biomed. Opt. 12, 034008 (2007).

    [13] J. Wierwille et al., "In vivo, label-free, threedimensional quantitative imaging of kidney microcirculation using Doppler optical coherence tomography," Lab. Invest. 91, 1596–1604 (2011).

    [14] K. W. Dunn et al., "Functional studies of the kidney of living animals using multicolor two-photon microscopy," Am. J. Physiol. Cell Physiol. 283, C905–C916 (2002).

    [15] S. L. Ashworth, R. M. Sandoval, G. A. Tanner, B. A. Molitoris, "Two-photon microscopy: Visualization of kidney dynamics," Kidney Int. 72, 416–421 (2007).

    [16] C. L. Phillips et al., "Three-dimensional imaging of embryonic mouse kidney by two-photon microscopy," Am. J. Pathol. 158, 49–55 (2001).

    [17] P. M. Andrews, W. M. Petroll, H. D. Cavanagh, J. V. Jester, "Tandem Scanning Confocal Microscopy (Tscm) of normal and ischemic living kidneys," Am. J. Anat. 191, 95–102 (1991).

    [18] P. M. Andrews, B. S. Khirabadi, B. C. Bengs, "Using tandem scanning confocal microscopy to predict the status of donor kidneys," Nephron 91, 148–155 (2002).

    [19] S. Quentmeier, S. Denicke, K. H. Gericke, "Twocolor two-photon fluorescence laser scanning microscopy," J. Fluores. 19, 1037–1043 (2009).

    [20] P. T. C. So, H. Kim, I. E. Kochevar, "Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures," Opt. Express 3, 339–350 (1998).

    [21] W. Denk, J. H. Strickler, W. W. Webb, "Twophoton laser scanning fluorescence microscopy," Science 248, 73–6 (1990).

    [22] H. C. Guo et al., "Two-photon fluorescence imaging of intracellular hydrogen peroxide with chemoselective fluorescent probes," J. Biomed. Opt. 18, 106002 (2013).

    [23] W. R. Zipfel, R. M. Williams, W. W. Webb, "Nonlinear magic: Multiphoton microscopy in the biosciences," Nature Biotechnol. 21, 1368–1376 (2003).

    [24] Y. Chen et al., "Recent advances in two-photon imaging: Technology developments and biomedical applications," Chin. Opt. Lett. 11, 011703 (2013).

    [25] G. McConnell, E. Riis, "Two-photon laser scanning fluorescence microscopy using photonic crystal fiber," J. Biomed. Opt. 9, 922–927 (2004).

    [26] F. Helmchen, W. Denk, "Deep tissue twophoton microscopy," Nature Meth. 2, 932–940 (2005).

    [27] E. M. C. Hillman et al., "Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation," Neuroimage 35, 89–104 (2007).

    [28] M. B. Ericson et al., "Two-photon laser-scanning fluorescence microscopy applied for studies of human skin," J. Biophotonics 1, 320–330 (2008).

    [29] D. G. Ouzounov et al., "In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain," Nature meth. 14, 388–390 (2017).

    [30] W. Liang, G. Hall, B. Messerschmidt, M.-J. Li, X. Li, "Nonlinear optical endomicroscopy for label-free functional histology in vivo," Light: Science & Applications 6, e17082 (2017). DOI: 10.1038/lsa.2017.82.

    [31] H. Koepsell, "In vivo two-photon fluorescence microscopy opens a new area for investigation of the excretion of cationic drugs in the kidney," Kidney Int. 72, 387–388 (2007).

    [32] J. J. Kang, I. Toma, A. Sipos, F. McCulloch, J. Peti- Peterdi, "Quantitative imaging of basic functions in renal (patho)physiology," Am. J. Physiol. Renal Physiol. 291, F495–F502 (2006).

    [33] B. A. Molitoris, R. M. Sandoval, "Intravital multiphoton microscopy of dynamic renal processes," Am. J. Physiol. Renal Physiol. 288, F1084–F1089 (2005).

    [34] D. Huang et al., "Optical coherence tomography," Science 254, 1178–81 (1991).

    [35] J. G. Fujimoto et al., "Optical biopsy and imaging using optical coherence tomography," Nature Med. 1, 970–972 (1995).

    [36] G. J. Tearney et al., "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037–2039 (1997).

    [37] B. E. Bouma, S. H. Yun, B. J. Vakoc, M. J. Suter, G. J. Tearney, "Fourier-domain optical coherence tomography: Recent advances toward clinical utility," Curr. Opin. Biotechnol. 20, 111–118 (2009).

    [38] C. Kut et al., "Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography," Sci. Trans. Med. 7, 292ra100 (2015).

    [39] J. G. Fujimoto, C. Pitris, S. A. Boppart, M. E. Brezinski, "Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy," Neoplasia 2, 9–25 (2000).

    [40] J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361–1367 (2003).

    [41] Z. P. Chen et al., "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119–1121 (1997).

    [42] J. A. Izatt, M. D. Kulkami, S. Yazdanfar, J. K. Barton, A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomograghy," Opt. Lett. 22, 1439–1441 (1997).

    [43] Y. H. Zhao et al., "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25, 1358–1360 (2000).

    [44] R. K. Wang, "Optical microangiography: A labelfree 3-D imaging technology to visualize and quantify blood circulations within tissue beds in vivo," IEEE J. Sel. Top. Quantum Electron. 16, 545–554 (2010).

    [45] Q. Zhang et al., "Wide-field optical coherence tomography based microangiography for retinal imaging," Sci. Rep. 6, 22017 (2016).

    [46] V. W. S. Lee, D. C. H. Harris, "Adriamycin nephropathy: A model of focal segmental glomerulosclerosis," Nephrology 16, 30–38 (2011).

    [47] J. W. Pippin et al., "Inducible rodent models of acquired podocyte diseases," Am. J. Physiol. Renal Physiol. 296, F213–F229 (2009).

    [48] T. Bertani et al., "Adriamycin-induced nephrotic syndrome in rats — sequence of pathologic events," Lab. Invest. 46, 16–23 (1982).

    [49] T. Bertani, F. Cutillo, C. Zoja, M. Broggini, G. Remuzzi, "Tubulointerstitial lesions mediate renal damage in adriamycin glomerulopathy," Kidney Int. 30, 488–496 (1986).

    [50] J. Grond, J. J. Weening, J. D. Elema, "Glomerular sclerosis in nephrotic rats — comparison of the longterm effects of adriamycin and aminonucleoside," Lab. Invest. 51, 277–285 (1984).

    [51] S. Okuda et al., "Adriamycin-induced nephropathy as a model of chronic progressive glomerular-disease," Kidney Int. 29, 502–510 (1986).

    [52] H. Hackbarth et al., "Distribution of glomeruli in the renal cortex of munich wistar fromter (Mwf) rats," Renal Physiol. Biochem. 6, 63–71 (1983).

    [53] Q. Tang et al., "Depth-resolved imaging of colon tumor using optical coherence tomography and fluorescence laminar optical tomography," Biomed. Opt. Exp. 7, 5218–5232 (2016).

    [54] Q. Tang, C.-P. Liang, K. Wu, A. Sandler, Y. Chen, "Real-time epidural anesthesia guidance using optical coherence tomography needle probe," Quant. Imag. Med. Surg. 5, 118–124 (2014).

    [55] Q. Tang et al., "High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT)," Biomed. Opt. Exp. 8, 2124–2137 (2017).

    [56] V. X. Yang et al., "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): In vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts," Opt. Exp. 11, 2416–2424 (2003).

    [57] Q. Tang et al., "Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo," J. Control. Release 260, 154–163 (2017).

    [58] Z. Ding et al., "In Oxygen transport to tissue XXXVIII," (Eds. Q. Luo, L. Z. Li, D. K. Harrison, H. Shi, D. F. Bruley) 345–350, Springer International Publishing, Cham, (2016).

    [59] H.-W. W. Bohan Wang, H. Guo, E. Anderson, Q. Tang, P. M. Andrews, Y. Chen, "Optical Coherence Tomography (OCT) and Computer-Aided Diagnosis (CAD) of a murine model of Chronic Kidney Disease (CKD)," J. Biomed. Opt. 22, 121706 (2017). DOI: 10.1117/1.JBO.22.12.121706.

    [60] T. Kotyk et al., "Measurement of glomerulus diameter and Bowman's space width of renal albino rats," Comput. Meth. Program. Biomed. 126, 143– 153 (2016).

    [61] https://www.niddk.nih.gov/health-information/ kidney-disease/kidneys-how-they-work.

    [62] J. Wartiovaara et al., "Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography," J. Clin. Invest. 114, 1475–1483 (2004).

    [63] Y. S. Kanwar, Z. Z. Liu, N. Kashihara, E. I. Wallner, "Current status of the structural and functional basis of glomerular filtration and proteinuria," Semin. Nephrol. 11, 390–413 (1991).

    [64] P. Mundel, S. J. Shankland, "Podocyte biology and response to injury," J. Am. Soc. Nephrol. 13, 3005– 3015 (2002).

    [65] K. Endlich, W. Kriz, R. Witzgall, "Update in podocyte biology," Curr. Opin. Nephrol. Hypertens. 10, 331–340 (2001).

    [66] K. Tryggvason, J. Wartiovaara, "Molecular basis of glomerular permselectivity," Curr. Opin. Nephrol. Hypertens. 10, 543–549 (2001).

    [67] R. Rodewald, M. J. Karnovsky, "Porous substructure of the glomerular slit diaphragm in the rat and mouse," J. Cell Biol. 60, 423–433 (1974).

    [68] H. P. Erickson, "Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy," Biol. Proced. Online 11, 32–51 (2009).

    [69] J. Peti-Peterdi, "Multiphoton imaging of renal tissues in vitro," Am. J. Physiol. Renal Physiol. 288, F1079–F1083 (2005).

    [70] J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, M. J. Schnitzer, "In vivo mammalian brain Imaging using one- and two-photon fluorescence microendoscopy," J. Neurophysiol. 92, 3121–3133 (2004).

    [71] J. Peti-Peterdi, I. Toma, A. Sipos, S. L. Vargas, "Multiphoton imaging of renal regulatory mechanisms," Physiol. 24, 88–96 (2009).

    [72] A. H. Salmon et al., "Evidence for restriction of fluid and solute movement across the glomerular capillary wall by the subpodocyte space," Am. J. Physiol. Renal Physiol. 293, F1777–F1786 (2007).

    [73] J. Peti-Peterdi, J. J. Kang, I. Toma, "Activation of the renal renin-angiotensin system in diabetes—new concepts," Nephrology Dialysis Transplantation 23, 3047–3049 (2008)

    [74] K. W. Dunn, R. M. Sandoval, B. A. Molitoris, "Intravital imaging of the kidney using multiparameter multiphoton microscopy," Nephron Exp. Nephrol. 94, e7–e11 (2003).

    [75] M. L. Onozato et al., "Optical coherence tomography of human kidney," J. Urol. 183, 2090–2094 (2010).

    Hengchang Guo, Hsing-Wen Wang, Qinggong Tang, Erik Anderson, Reuben Falola, Tikina Smith, Yi Liu, Moshe Levi, Peter M., Yu Chen. Intravital imaging of adriamycin-induced renal pathology using two-photon microscopy and optical coherence tomography[J]. Journal of Innovative Optical Health Sciences, 2018, 11(5): 1850030
    Download Citation