• Laser & Optoelectronics Progress
  • Vol. 58, Issue 8, 0800003 (2021)
Qianting Yang, Abdurahman Renagul*, Yin Yan, and Mamtimin Gulgina
Author Affiliations
  • Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashgar, Xinjiang 844000, China
  • show less
    DOI: 10.3788/LOP202158.0800003 Cite this Article Set citation alerts
    Qianting Yang, Abdurahman Renagul, Yin Yan, Mamtimin Gulgina. Brief Introduction of Cr 3+-Doped Persistent Luminescence Nanoparticles in Biomedical Applied Research[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0800003 Copy Citation Text show less
    References

    [1] Smet P F, Poelman D, Hehlen M P. Focus issue introduction: persistent phosphors[J]. Optical Materials Express, 2, 452-454(2012).

    [2] Wu S Q, Li Y, Ding W H et al. Recent advances of persistent luminescence nanoparticles in bioapplications[J]. Nano-Micro Letters, 12, 1-26(2020). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wnkb-e202006001

    [3] Yang Y M, Li Z Y, Zhang J Y et al. X-ray-activated long persistent phosphors featuring strong UVC afterglow emissions[J]. Light, Science & Applications, 7, 88(2018). http://www.nature.com/articles/s41377-018-0089-7

    [4] Qu B Y, Zhang B, Wang L et al. Mechanistic study of the persistent luminescence of CaAl2O4∶Eu, Nd[J]. Chemistry of Materials, 27, 2195-2202(2015). http://pubs.acs.org/doi/abs/10.1021/acs.chemmater.5b00288

    [5] Lin Q S, Li Z H, Yuan Q. Recent advances in autofluorescence-free biosensing and bioimaging based on persistent luminescence nanoparticles[J]. Chinese Chemical Letters, 30, 1547-1556(2019).

    [6] Wei X J, Huang X D, Zeng Y et al. Longer and stronger: improving persistent luminescence in size-tuned zinc gallate nanoparticles by alcohol-mediated chromium doping[J]. ACS Nano, 14, 12113-12124(2020). http://www.researchgate.net/publication/343590005_Longer_and_Stronger_Improving_Persistent_Luminescence_in_Size-Tuned_Zinc_Gallate_Nanoparticles_by_Alcohol-Mediated_Chromium_Doping

    [7] Ding S S, Guo H J, Feng P et al. A new near-infrared long persistent luminescence material with its outstanding persistent luminescence performance and promising multifunctional application prospects[J]. Advanced Optical Materials, 8, 2000097(2020). http://onlinelibrary.wiley.com/doi/full/10.1002/adom.202000097

    [8] Bol A A, Ferwerda J, Bergwerff J A et al. Luminescence of nanocrystalline ZnS∶Cu 2+[J]. Journal of Luminescence, 99, 325-334(2002). http://www.sciencedirect.com/science/article/pii/S0022231302003502

    [9] Han S C, Wang Y H, Zeng W et al. An outlook of rare-earth activated persistent luminescence mechanisms[J]. Journal of Rare Earths, 34, 245-250(2016). http://www.cqvip.com/QK/84120X/201603/668069670.html

    [10] Matsuzawa T, Aoki Y, Takeuchi N et al. A new long phosphorescent phosphor with high brightness, SrAl2O4∶Eu 2+, Dy 3+[J]. Journal of the Electrochemical Society, 143, 2670-2673(1996). http://ci.nii.ac.jp/naid/10017627416

    [11] Wang L, Shang Z J, Shi M M et al. Preparing and testing the reliability of long-afterglow SrAl2O4∶Eu 2+, Dy 3+ phosphor flexible films for temperature sensing[J]. RSC Advances, 10, 11418-11425(2020). http://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra00628a

    [12] Shen X Y, Tang S S, Hu Q et al. Doping SrAl2O4∶Eu 2+, Dy 3+ and thermochromic materials for the generation of anticounterfeiting membrane[J]. ECS Journal of Solid State Science and Technology, 9, 076001(2020). http://www.researchgate.net/publication/343565088_Doping_SrAl2O4Eu2_Dy3_and_thermochromic_materials_for_the_generation_of_anticounterfeiting_membrane

    [13] Lyu L, Chen Y X, Yu L T et al. The improvement of moisture resistance and organic compatibility of SrAl2O4∶Eu 2+, Dy 3+ persistent phosphors coated with silica-polymer hybrid shell[J]. Materials, 13, 426(2020). http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_materials_thesis/040006272306.html

    [14] Adhinarta J K, Jobiliong E, Shiddiq M et al. Light storage and thermal-assisted switching of SrAl2O4∶Eu 2+, Dy 3+[J]. Journal of Nonlinear Optical Physics & Materials, 28, 1950042(2019).

    [15] Ruiz-Torres R, Chernov V, Salas-Castillo P et al. Effect of thermal treatment on luminescence properties of long persistent CaAl2O4∶Eu 2+, Dy 3+ synthesized by combustion method[J]. Optical Materials, 101, 109763(2020). http://www.sciencedirect.com/science/article/pii/S0925346720301142

    [16] Khattab R M, Sadek H E H, Badr H A et al. Preparation of strontium aluminate: Eu 2+ and Dy 3+ persistent luminescent materials based on recycling alum sludge[J]. Ceramics International, 46, 12955-12964(2020).

    [17] Castaing V, Monteiro C, Fernández-Carrión A J et al. Persistent luminescence features in hexagonal Sr0.75Al1.5Si0.5O4∶Eu 2+ phosphor[J]. Proceedings of SPIE, 11276, 112761O(2020).

    [18] Majewska N, Leśniewski T, Mahlik S et al. Study of persistent luminescence and thermoluminescence in SrSi2N2O2∶Eu 2+, M 3+ (M = Ce, Dy, and Nd)[J]. Physical Chemistry Chemical Physics, 22, 17152-17159(2020).

    [19] Kuang J Y, Liu Y L, Zhang J X et al. Blue-emitting long-lasting phosphor, Sr3Al10SiO20∶Eu 2+, Ho 3+[J]. Solid State Communications, 136, 6-10(2005).

    [20] Danthanarayana A N, Finley E, Vu B et al. A multicolor multiplex lateral flow assay for high-sensitivity analyte detection using persistent luminescent nanophosphors[J]. Analytical Methods, 12, 272-280(2020). http://pubs.rsc.org/en/content/articlelanding/2020/ay/c9ay02247c

    [21] Wang Z Z, Song Z, Ning L X et al. Sunlight-activated yellow long persistent luminescence from Nb-doped Sr3SiO5∶Eu 2+ for warm-color mark applications[J]. Journal of Materials Chemistry C, 8, 1143-1150(2020). http://pubs.rsc.org/en/content/articlelanding/2020/tc/c9tc05880j/unauth

    [22] Yadav P J, Joshi C P, Moharil S V. Persistent luminescence In Ca8Zn(SiO4)4Cl2∶Eu 2+[J]. Journal of Luminescence, 132, 2799-2801(2012). http://www.sciencedirect.com/science/article/pii/S0022231312003158

    [23] Rodrigues L C V, Brito H F, Hölsä J et al. Discovery of the persistent luminescence mechanism of CdSiO3∶Tb 3+[J]. The Journal of Physical Chemistry C, 116, 11232-11240(2012). http://dx.doi.org/10.1021/jp212021k

    [24] Dutczak D, Milbrat A, Katelnikovas A et al. Yellow persistent luminescence of Sr2SiO4∶ Eu 2+, Dy 3+[J]. Journal of Luminescence, 132, 2398-2403(2012).

    [25] Jia D D, Jia W Y, Evans D R et al. Trapping processes In CaS∶Eu 2+, Tm 3+[J]. Journal of Applied Physics, 88, 3402-3407(2000).

    [26] Jia D D, Zhu J, Wu B Q. Trapping centers In CaS∶Bi 3+ and CaS∶Eu 2+, Tm 3+[J]. Journal of the Electrochemical Society, 147, 386-389(2000).

    [27] Wang Z W, Ji H P, Xu J et al. Advances in valence state analysis of manganese in Mn 4+-activated red phosphors for white LEDs[J]. Chinese Journal of Luminescence, 41, 1195-1213(2020).

    [28] Ji Y. Synthesis and optical properties of Cr 3+ ions in gallate[D]. Changchun: Northeast Normal University(2014).

    [29] Zhang L L, Zhang J H, Hao Z D et al. Recent progress on Cr 3+ doped broad band NIR phosphors[J]. Chinese Journal of Luminescence, 40, 1449-1459(2019).

    [30] Yang X, Chen W B, Wang D S et al. Near-infrared photoluminescence and phosphorescence properties of Cr 3+-Doped garnet-type Y3Sc2Ga3O12[J]. Journal of Luminescence, 225, 117392(2020).

    [31] Yuan J P, Zhang Y, Xu J Y et al. Novel Cr 3+-doped double-perovskite Ca2MNbO6 (M = Ga, Al) phosphor: Synthesis, crystal structure, photoluminescence and thermoluminescence properties[J]. Journal of Alloys and Compounds, 815, 152656(2020).

    [32] Liu B M, Zou R, Lou S Q et al. Low-dose X-ray-stimulated LaGaO3∶Sb, Cr near-infrared persistent luminescence nanoparticles for deep-tissue and renewable in vivo bioimaging[J]. Chemical Engineering Journal, 404, 127133(2021). http://www.sciencedirect.com/science/article/pii/S1385894720332605

    [33] Bessière A, Jacquart S, Priolkar K et al. ZnGa2O4∶Cr 3+: a new red long-lasting phosphor with high brightness[J]. Optics Express, 19, 10131(2011). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-11-10131

    [34] Pan Z, Lu Y Y, Liu F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr 3+-doped zinc gallogermanates[J]. Nature Materials, 11, 58-63(2012).

    [35] Allix M, Chenu S, Véron E et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4[J]. Chemistry of Materials, 25, 1600-1606(2013). http://pubs.acs.org/doi/citedby/10.1021/cm304101n

    [36] Deng C. Novel Cr 3+ doped phosphors and its application in bioanalysis[D]. Guangzhou: Jinan University(2016).

    [37] Sun Y L. Luminescent nanomaterials developed sensing and detection of tumor markers[D]. Wuxi: Jiangnan University(2019).

    [38] Wu S Q, Chi C W, Yang C X et al. Penetrating peptide-bioconjugated persistent nanophosphors for long-term tracking of adipose-derived stem cells with superior signal-to-noise ratio[J]. Analytical Chemistry, 88, 4114-4121(2016). http://pubs.acs.org/doi/10.1021/acs.analchem.6b00449

    [39] Feng F, Chen X, Li G J et al. Afterglow resonance energy transfer inhibition for fibroblast activation protein-α assay[J]. ACS Sensors, 3, 1846-1854(2018). http://pubs.acs.org/doi/10.1021/acssensors.8b00680

    [40] Pinho S S, Reis C A. Glycosylation in cancer: mechanisms and clinical implications[J]. Nature Reviews. Cancer, 15, 540-555(2015). http://europepmc.org/abstract/MED/26289314

    [41] He N, Jiang Y, Lei L L et al. Background-free cell surface glycan analysis using persistent luminescence nanoparticle as an optical probe[J]. Analytical Biochemistry, 601, 113780(2020). http://www.sciencedirect.com/science/article/pii/S0003269720303122

    [42] Li J, Yang C, Wang W L et al. Functionalized gold and persistent luminescence nanoparticle-based ratiometric absorption and TR-FRET nanoplatform for high-throughput sequential detection of l-cysteine and insulin[J]. Nanoscale, 10, 14931-14937(2018). http://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr04414g

    [43] Li W B, Shen Y, Li B H. Advances in optical imaging for monitoring photodynamic therapy dosimetry[J]. Chinese Journal of Lasers, 47, 0207006(2020).

    [44] Moreno M J, Ling B B, Stanimirovic D B. in vivo near-infrared fluorescent optical imaging for CNS drug discovery[J]. Expert Opinion on Drug Discovery, 15, 903-915(2020).

    [45] Chanéac C, Seguin J et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging[J]. PNAS, 104, 9266-9271(2007). http://europepmc.org/articles/PMC1890483/

    [46] Kim Y, Park J R, Hong H K et al. In vivo imaging of the hyaloid vascular regression and retinal and choroidal vascular development in rat eyes using optical coherence tomography angiography[J]. Scientific Reports, 10, 12901(2020). http://www.nature.com/articles/s41598-020-69765-7

    [47] Shi J P, Sun X, Zhu J F et al. One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging[J]. Nanoscale, 8, 9798-9804(2016). http://www.ncbi.nlm.nih.gov/pubmed/27120221

    [48] Maldiney T, Bessière A, Seguin J et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells[J]. Nature Materials, 13, 418-426(2014). http://www.nature.com/articles/nmat3908

    [49] Wang X X. Research on synthesis of strong fluorescent carbon nanomaterials and targeted imaging of cell, subcellular organelle[D]. Jinan: Shandong Normal University(2020).

    [50] Abdukayum A, Chen J T, Zhao Q et al. Functional near infrared-emitting Cr 3+/Pr 3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging[J]. Journal of the American Chemical Society, 135, 14125-14133(2013). http://www.ncbi.nlm.nih.gov/pubmed/23988232

    [51] Li Y J, Yan X P. Synthesis of functionalized triple-doped zinc gallogermanate nanoparticles with superlong near-infrared persistent luminescence for long-term orally administrated bioimaging[J]. Nanoscale, 8, 14965-14970(2016). http://www.ncbi.nlm.nih.gov/pubmed/27466048

    [52] Zhao H X, Yang C X, Yan X P. Fabrication and bioconjugation of B III and Cr III co-doped ZnGa2O4 persistent luminescent nanoparticles for dual-targeted cancer r bioimaging[J]. Nanoscale, 8, 18987-18994(2016). http://www.ncbi.nlm.nih.gov/pubmed/27808311

    [53] Li R F, Shi K B. High spatiotemporal imaging based on optical field engineering[J]. Acta Optica Sinica, 39, 0126010(2019).

    [54] Kim J, Choi W, Park E Y et al. Real-time photoacoustic thermometry combined with clinical ultrasound imaging and high-intensity focused ultrasound[J]. IEEE Transactions on Biomedical Engineering, 66, 3330-3338(2019). http://www.ncbi.nlm.nih.gov/pubmed/30869607

    [55] Shin T H, Choi Y, Kim S et al. Recent advances in magnetic nanoparticle-based multi-modal imaging[J]. Chemical Society Reviews, 44, 4501-4516(2015). http://smartsearch.nstl.gov.cn/paper_detail.html?id=69d502ebc38a66c92bb351b4e1084511

    [56] Wang Y T, Chen C, Luo Y et al. Experimental study of tumor therapy mediated by multimodal imaging based on a biological targeting synergistic agent[J]. International Journal of Nanomedicine, 15, 1871-1888(2020). http://www.researchgate.net/publication/339967022_Experimental_Study_of_Tumor_Therapy_Mediated_by_Multimodal_Imaging_Based_on_a_Biological_Targeting_Synergistic_Agent

    [57] Wang Y, Yang C X, Yan X P. Hydrothermal and biomineralization synthesis of a dual-modal nanoprobe for targeted near-infrared persistent luminescence and magnetic resonance imaging[J]. Nanoscale, 9, 9049-9055(2017). http://www.ncbi.nlm.nih.gov/pubmed/28639659

    [58] Lu Y C, Yang C X, Yan X P. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging[J]. Nanoscale, 7, 17929-17937(2015). http://d.wanfangdata.com.cn/periodical/63ed0fc7142ff1cd9c9fec7283dfe7cc

    [59] Abdurahman R, Yang C X, Yan X P. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy[J]. Chemical Communications (Cambridge, England), 52, 13303-13306(2016). http://www.ncbi.nlm.nih.gov/pubmed/27782263

    [60] Fan W P, Lu N, Xu C et al. Enhanced afterglow performance of persistent luminescence implants for efficient repeatable photodynamic therapy[J]. ACS Nano, 11, 5864-5872(2017). http://www.ncbi.nlm.nih.gov/pubmed/28537714

    [61] Zheng B, Chen H B, Zhao P Q et al. Persistent luminescent nanocarrier as an accurate tracker in vivo for near infrared-remote selectively triggered photothermal therapy[J]. ACS Applied Materials & Interfaces, 8, 21603-21611(2016). http://europepmc.org/abstract/MED/27491888

    [62] Chen L J, Sun S K, Wang Y et al. Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy[J]. ACS Applied Materials & Interfaces, 8, 32667-32674(2016). http://dx.doi.org/10.1021/acsami.6b10702

    [63] Chen L J, Yang C X, Yan X P. Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy[J]. Analytical Chemistry, 89, 6936-6939(2017). http://europepmc.org/abstract/MED/28605896

    [64] Cheng L, Wang C, Feng L Z et al. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 114, 10869-10939(2014). http://europepmc.org/abstract/MED/25260098

    [65] Karges J, Chao H, Gasser G. Critical discussion of the applications of metal complexes for 2-photon photodynamic therapy[J]. JBIC Journal of Biological Inorganic Chemistry, 25, 1035-1050(2020). http://www.ncbi.nlm.nih.gov/pubmed/33146771

    [66] Tsay J M, Trzoss M, Shi L X et al. Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates[J]. Journal of the American Chemical Society, 129, 6865-6871(2007).

    [67] Nguyen K, Khachemoune A. An update on topical photodynamic therapy for clinical dermatologists[J]. Journal of Dermatological Treatment, 30, 732-744(2019). http://www.ncbi.nlm.nih.gov/pubmed/30648439

    [68] Liu W, Song N, Li Y Y et al. Cyclometallic iridium-based nanorods for chemotherapy/photodynamic therapy[J]. Materials Letters, 266, 127346(2020). http://www.sciencedirect.com/science/article/pii/S0167577X20300513

    [69] Guo D X, Ji X Y, Peng F et al. Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided Co-delivery of SiRNA and doxorubicin to drug-resistant cancer cells[J]. Nano-Micro Letters, 11, 1-13(2019).

    [70] Ma Y M, Ma L Y, Qin Z Z et al. Photothermal therapy method based on precise regulation of photoacoustic temperature[J]. Chinese Journal of Lasers, 47, 1007001(2020).

    [71] Tutter M, Schug C, Schmohl K A et al. Regional hyperthermia enhances mesenchymal stem cell recruitment to tumor stroma: implications for mesenchymal stem cell-based tumor therapy[J]. Molecular Therapy, 29, 788-803(2021). http://www.sciencedirect.com/science/article/pii/S1525001620305438

    [72] Ringe J, Burmester G R, Sittinger M. Regenerative medicine in rheumatic disease-progress in tissue engineering[J]. Nature Reviews. Rheumatology, 8, 493-498(2012). http://www.nature.com/nrrheum/journal/v8/n8/abs/nrrheum.2012.98.html

    [73] Qi T, Gao H X, Dang Y Z et al. Cervus and cucumis peptides combined umbilical cord mesenchymal stem cells therapy for rheumatoid arthritis[J]. Medicine, 99, e21222(2020). http://journals.lww.com/md-journal/subjects/Rheumatology/Fulltext/2020/07100/Cervus_and_cucumis_peptides_combined_umbilical.125.aspx

    [74] Yu T T. Review of tissue optical clearing methods for imaging whole organs[J]. Chinese Journal of Lasers, 47, 0207007(2020).

    [75] Cihova M, Altanerova V, Altaner C. Stem cell based cancer gene therapy[J]. Molecular Pharmaceutics, 8, 1480-1487(2011). http://www.ncbi.nlm.nih.gov/pubmed/21755953

    [76] Wu S Q, Yang C X, Yan X P. A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma[J]. Advanced Functional Materials, 27, 1604992(2017). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201604992

    [77] Fuentes D T, Traylor J et al. The use of laser interstitial thermal therapy in the treatment of brain metastases: a literature review[J]. International Journal of Hyperthermia, 37, 53-60(2020). http://www.tandfonline.com/doi/abs/10.1080/02656736.2020.1748238

    [78] Li Y J, Yang C X, Yan X P. Biomimetic persistent luminescent nanoplatform for autofluorescence-free metastasis tracking and chemophotodynamic therapy[J]. Analytical Chemistry, 90, 4188-4195(2018). http://pubs.acs.org/doi/10.1021/acs.analchem.8b00311

    Qianting Yang, Abdurahman Renagul, Yin Yan, Mamtimin Gulgina. Brief Introduction of Cr 3+-Doped Persistent Luminescence Nanoparticles in Biomedical Applied Research[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0800003
    Download Citation