• Photonics Research
  • Vol. 9, Issue 10, 10001998 (2021)
Yi-Chen Liu1、†, Dong-Jie Guo1、†, Ran Yang1, Chang-Wei Sun1, Jia-Chen Duan1, Yan-Xiao Gong1、2、*, Zhenda Xie1、3、*, and Shi-Ning Zhu1
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 2e-mail: gongyanxiao@nju.edu.cn
  • 3e-mail: xiezhenda@nju.edu.cn
  • show less
    References
    [1] J. L. O’Brien, A. Furusawa, J. Vuckovic. Photonic quantum technologies. Nat. Photonics, 3, 687-695(2009).
    [2] J. I. Cirac, A. K. Ekert, S. F. Huelga, C. Macchiavello. Distributed quantum computation over noisy channels. Phys. Rev. A, 59, 4249-4254(1999).
    [3] N. Gisin, G. G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).
    [4] A. I. Lvovsky, B. C. Sanders, W. Tittel. Optical quantum memory. Nat. Photonics, 3, 706-714(2009).
    [5] X.-M. Jin, J.-G. Ren, B. Yang, Z.-H. Yi, F. Zhou, X.-F. Xu, S.-K. Wang, D. Yang, Y.-F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C.-Z. Peng, J.-W. Pan. Experimental free-space quantum teleportation. Nat. Photonics, 4, 376-381(2010).
    [6] N. Gisin, R. Thew. Quantum communication. Nat. Photonics, 1, 165-171(2007).
    [7] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).
    [8] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Milburn. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 79, 135-174(2007).
    [9] L.-M. Duan, M. D. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413-418(2001).
    [10] H. J. Briegel, W. Dur, J. I. Cirac, P. Zoller. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett., 81, 5932-5935(1998).
    [11] C. Jones, D. Kim, M. T. Rakher, P. G. Kwiat, T. D. Ladd. Design and analysis of communication protocols for quantum repeater networks. New J. Phys., 18, 083015(2016).
    [12] H. J. Kimble. The quantum internet. Nature, 453, 1023-1030(2008).
    [13] E. Saglamyurek, J. Jin, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, D. Oblak, W. Tittel. Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre. Nat. Photonics, 9, 83-87(2015).
    [14] J. Jin, E. Saglamyurek, M. L. Puigibert, V. Verma, F. Marsili, S. W. Nam, D. Oblak, W. Tittel. Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits. Phys. Rev. Lett., 115, 140501(2015).
    [15] E. Saglamyurek, N. Sinclair, J. Jin, J. A. Slater, D. Oblak, F. Bussieres, M. George, R. Ricken, W. Sohler, W. Tittel. Broadband waveguide quantum memory for entangled photons. Nature, 469, 512-515(2011).
    [16] M. F. Askarani, M. L. G. Puigibert, T. Lutz, V. B. Verma, M. D. Shaw, S. W. Nam, N. Sinclair, D. Oblak, W. Tittel. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide. Phys. Rev. Appl., 11, 054056(2019).
    [17] M. Rančić, M. P. Hedges, R. L. Ahlefeldt, M. J. Sellars. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys., 14, 50-54(2017).
    [18] M. P. Hedges, J. J. Longdell, Y. Li, M. J. Sellars. Efficient quantum memory for light. Nature, 465, 1052-1056(2010).
    [19] C. Kurtsiefer, M. Oberparleiter, H. Weinfurter. High-efficiency entangled photon pair collection in type-II parametric fluorescence. Phys. Rev. A, 64, 023802(2001).
    [20] S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. B. Ostrowsky, N. Gisin. Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electron. Lett., 37, 26-28(2001).
    [21] M. Halder, A. Beveratos, N. Gisin, V. Scarani, C. Simon, H. Zbinden. Entangling independent photons by time measurement. Nat. Phys., 3, 692-695(2007).
    [22] M. Halder, S. Tanzilli, H. D. Riedmatten, A. Beveratos, H. Zbinden, N. Gisin. Photon-bunching measurement after two 25-km-long optical fibers. Phys. Rev. A, 71, 042335(2005).
    [23] M. Scholz, L. Koch, O. Benson. Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett., 102, 063603(2009).
    [24] S. E. Harris. Proposed backward wave oscillation in the infrared. Appl. Phys. Lett., 9, 114-116(1966).
    [25] A. Christ, A. Eckstein, P. J. Mosley, C. Silberhorn. Pure single photon generation by type-I PDC with backward-wave amplification. Opt. Express, 17, 3441-3446(2009).
    [26] Y.-X. Gong, Z.-D. Xie, P. Xu, X.-Q. Yu, P. Xue, S.-N. Zhu. Compact source of narrow-band counter propagating polarization-entangled photon pairs using a single dual-periodically-poled crystal. Phys. Rev. A, 84, 053825(2011).
    [27] M. C. Booth, M. Atature, G. D. Giuseppe, B. E. A. Saleh, A. V. Sergienko, M. C. Teich. Counterpropagating entangled photons from a waveguide with periodic nonlinearity. Phys. Rev. A, 66, 023815(2002).
    [28] W.-H. Cai, B. Wei, S. Wang, R.-B. Jin. Counter-propagating spectrally uncorrelated biphotons at 1550 nm generated from periodically poled MTiOXO4 (M = K, Rb, Cs; X = P, As). J. Opt. Soc. Am. B, 37, 3048-3054(2020).
    [29] C. Canalias, V. Pasiskevicius. Mirrorless optical parametric oscillator. Nat. Photonics, 1, 459-462(2007).
    [30] L. Lanco, S. Ducci, J. P. Likforman, X. Marcadet, J. A. Houwelingen, H. Zbinden, G. Leo, V. Berger. Semiconductor waveguide source of counterpropagating twin photons. Phys. Rev. Lett., 97, 173901(2006).
    [31] A. A. Shukhin, I. Z. Latypov, A. V. Shkalikov, A. A. Kalachev. Simulating single-photon sources based on backward-wave spontaneous parametric down-conversion in a periodically poled KTP waveguide. Epj. Web. Conf., 103, 012015(2015).
    [32] K. H. Luo, V. Ansari, M. Massaro, M. Santandrea, C. Eigner, R. Ricken, H. Herrmann, C. Silberhorn. Counter-propagating photon pair generation in a nonlinear waveguide. Opt. Express, 28, 3215-3225(2020).
    [33] S. Francesconi, F. Baboux, A. Raymond, N. Fabre, G. Boucher, A. Lemaître, P. Milman, M. I. Amanti, S. Ducci. Engineering two-photon wavefunction and exchange statistics in a semiconductor chip. Optica, 7, 316-322(2020).
    [34] A. Gilchrist, N. K. Langford, M. A. Nielsen. Distance measures to compare real and ideal quantum processes. Phys. Rev. A, 71, 062310(2005).
    [35] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23, 880-884(1969).
    [36] D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White. Measurement of qubits. Phys. Rev. A, 64, 052312(2001).
    [37] C. K. Hong, Z. Y. Ou, L. Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett., 59, 2044-2046(1987).
    [38] A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, A. Zeilinger. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express, 15, 15377-15386(2007).
    [39] O. Kuzucu, F. N. C. Wong. Pulsed Sagnac source of narrow-band polarization-entangled photons. Phys. Rev. A, 77, 032314(2008).
    [40] L. Sansoni, K. H. Luo, C. Eigner, R. Ricken, V. Quiring, H. Herrmann, C. Silberhorn. A two-channel, spectrally degenerate polarization entangled source on chip. npj Quantum Inf., 3, 5(2017).
    [41] H. Herrmann, X. Yang, A. Thomas, A. Poppe, W. Sohler, C. Silberhorn. Post-selection free, integrated optical source of non-degenerate, polarization entangled photon pairs. Opt. Express, 21, 27981-27991(2013).
    [42] C.-W. Sun, S.-H. Wu, J.-C. Duan, J.-W. Zhou, J.-L. Xia, P. Xu, Z. Xie, Y.-X. Gong, S.-N. Zhu. Compact polarization-entangled photon-pair source based on a dual-periodically-poled Ti:LiNbO3 waveguide. Opt. Lett., 44, 5598-5601(2019).
    [43] X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, J.-W. Pan. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys. Rev. Lett., 101, 190501(2008).
    [44] L. Tian, S. Li, H. Yuan, H. Wang. Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line. J. Phys. Soc. Jpn., 85, 124403(2016).